Preview

Fundamental and Applied Hydrophysics

Advanced search

Oceanological Models of Non Hydrostatic Dynamics: A Review

https://doi.org/10.7868/S207366731801001X

Abstract

Results devoted to different aspects of oceanographic models for non-hydrostatic dynamics reported during two-three last decades are discussed in this review. Achievement in this field was obtained mainly due to the progress in computational hydrodynamics which marked a qualitatively new current level of World ocean dynamics and its regions modelling. Wide thematic of non-hydrostatic modelling includes consideration of the processes and phenomena with pronounced vertical movements. For their description, taking into account the dynamic component of pressure is desirable and in some cases essential. Statement of particular boundary value problems for non-hydrostatic dynamics equations subsystems, methods of their realization and, finally, evaluation and analysis of non-hydrostatic effects are the objectives of the present review. The basis of oceanographic non-hydrostatic models consists in formulation and methods of resolving of boundary problems for the Navier—Stokes equations of viscous incompressible fluid dynamics. A necessary consideration of such works is a section of this review. The presentation focuses at works which use the most common projections method of oceanographic models realization by different types of domain discretization: finite-difference grid, finite-volume, finiteelement and different forms of solution presentation: in boundary conformal coordinates, series, spectral decomposition etc. These approximations are tested and used for separate mesoscale processes and non-hydrostatic dynamics of subdomain of the region in the frame of a large-scale model. The structure of the projection method determines the splitting operator of the task and computation of the velocity fields approach at stages of time step. The hydrostatic problem solution can serve as such an approach. Such a suitable approach links hydrostatic approach with a non-hydrostatic module for the Navier—Stokes equations. That is emphasized in this review.

This review is brief. We tried not to overload it either with formulas, where it was possible, or bibliography because each cited reference in general contains its own wide bibliography. Its goal is presentation in a simple and general view of the status of matured non-hydrostatic modelling which elements will in the near future make it possible to resolve boundary problems of non-hydrostatic dynamics of wide regions and longest section of World ocean shelf on the basis of parallel computing.

About the Authors

N. E. Voltzinger
Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

Moscow



A. A. Androsov
Shirshov Institute of Oceanology, Russian Academy of Sciences; Alfred Weneger Institute for Polar and Marine Studies
Germany

Moscow; Bremerhaven



K. A. Klevannyy
CARDINAL-Soft, LLC
Russian Federation

St.-Petersburg



A. S. Safrai
Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

Moscow



References

1. Stoker J. J. Water waves. The mathematical theory with applications. Interscience Publ., 1957. 609 p.

2. Marshall J., Hill C., Perelman L., Adroft A. Hydrostatic, quasi-hydrostatic and non-hydrostatic ocean modeling. Geophys. Res J. 1997, 102, C.3, 5733—5752.

3. Jones H., Marshall J. Convection with rotation in a neutral ocean: a study of open-ocean deep convection. Phys. Oceanogr J. 1993, 23, 1009—1039.

4. Androsov A., Rubino A., Romeiser R., Sein D. Open-ocean convection in the Greenland Sea: preconditioning through a mesoscale chimney and detectability in SAR imagery studied with hierarchy of nested numerical models. Meteorologiche Zeitschrift J. 2005, 14, 14, 693—702.

5. Mahadevan A., Oliger J., Street R. A non-hydrostatic mesoscale ocean model, part 1, 2. Phys. Oceanogr. J. 1996, 26, 1868— 1900.

6. Shapiro G. I., Hill A. E. Dynamics of dence water cascades at the shelf edge. Phis. Oceanogr. J. 1997, 27(1), 2381—2394.

7. Zhu D. Z., Lawrence G. A. Non-hydrostatic effects in layered shallow water flows. Fluid. Mech J. 1998, 355(25), 1—16.

8. Wadzuk B.

9. . Davis A. M., Xing J., Berntsen J. Non-hydrostatic and non-linear contributions to the internal wave energy flux in sill region. Ocean Dynamics. J. 2009, 59(6), 881—897.

10. Zhang Z., Fringer O. B., Ramp S. R. Three-dimensional, non-hydrostatic numerical simulation of non-linear internal wave generation and propagation in the South China Sea. Geoph. Res. J. 2011, 116, C05022, 1—26.

11. Voltcinger N. E., Androsov A. A. Non-hydrostatic barotropic-baroclynic interaction in the strait with a mountain relief. Fund. Prikl. Gidrofiz. 2013, 6, 3, 63—77. (in Russian).

12. Voltcinger N. E., Androsov A. A. Non-hydrostatic dynamics of the region with a underwater mountain. Oceanology. 2016, 56, 4, 537—546 (in Russian).

13. Ma G., Shi F., Kirby J. Shock-capturing non-hydrostatic model for fully dispersive surface wave process. Ocean Modeling. J. 2012, 43—44, 27—35.

14. Dutykh D., Kalish H. Boussinesq modeling of surface waves due to underwater landslides. Nonlinear Proces. Geophys. J. 2013, 20, 267—285.

15. Chubarov L. B., Eletsky S. V., Fedotova Z. I., Khakimzyanov G. S. Simulation of surface waves generation by an underwater landslides. Russian Journ. Numer. Anal. Math. Model. J. 2005, 20(5), 425—437.

16. Didenkulova I. I., Pelinovsky E. N. Roll long Waves forward the shore: influence of a approaching wave. Oceanology. 2008, 48, 1, 5—13 (in Russian).

17. Didenkulova I., Nikolina I., Pelinovsky E., Zahibo N. Tsunami waves generated by submarine landslides of variable volume: analytical solutions for a basin of variable depth. Nat. Hazards Earth Syst. Sci. J. 2010, 10, 11, 2407—2419.

18. Beyzel S. A., Hakimzyanov G. S., Chubarov L. B. Modelling of the surface waves generated by the underwater landslide movig along spatially inhomogeneous slope. Num. Tech. 2010, 15, 3, 39—51 (in Russian).

19. Moum J. N., Farmer D. M., Smith W. D., Armi L., Vagle S. Structure and generation of turbulence at interfaces strained by internal solitarywaves propagation shoreward over the continental shelf. Phys. Oceanogr. J. 2003, 33, 2093—2112.

20. Nash J., Moum J. N. River plums as a source of large-amplitude internal waves in the coastal ocean. Nature. 2005, 473, 400— 403.

21. Safray A. S., Tkachenko I. V. 3-D non-hydrostatic air-water model. Fund. Appl. Hydrophys. 2013, 6, 1, 14—22 (in Russian).

22. Fletcher C. A. J. Computational Techniques for Fluid Dynamics (Num. Sol. of PDE’s), 2 volumes, 2nd ed., New York, SpringerVerlag, 1991—1992. 502, 552 p.

23. Safray A. S., Tkachenko I. V., Gordeeva S. M., Belevich M. Yu. Internal waves seasonal variability at the Barents sea simulation. Navig. Hydrogr. 2006, 22, 118—125 (in Russian).

24. Hubbard H. E., Thompson J. D. A numerical study of loop current intrusion and eddy shedding. Phys. Oceanogr. J. 1980, 10, 1611—1648.

25. Kanarska Y., Shchepetkin A., Mc Williams J. C. Algorithm for non-hydrostatic dynamics in the Regional Oceanic Modeling System. Ocean Model. J. 2007, 18, 143—147.

26. Voltcinger N. E., Androsov A. A. Non-hydrostatic dynamics of the World ocea straits. Fund. Prikl. Gidrofiz. 2016, 9, 1, 26—40 (in Russian).

27. Voltcinger N. E., Androsov A. A. Calculation of barotropic-baroclynic interaction energy in the Bab-El-Mandeb Strait. Izv. RAN Fiz. Atm. Oc. 2010, 9, 1, 235—245 (in Russian).

28. Wadzuk B. M., Hodfes B. R. Isolation of hydrostatic regions within a basin. 17-th ASCE Engin. Mech. Conf. 2004. Univ.of Delaware, Newark.

29. Oliger J., Sundstrom A. Theoretical and practical aspects of some initial boundary-value problems in fluid dynamica. SIAM J. Appl. Math. 1978, 35, 3, 419—445.

30. Marchuk G. I., Kagan B. A. Dynamics of Ocean Tides. Springer, 1989. 327 p.

31. Numerical methods of storm surge calculations. Ed . Grushevsky M. S., L., Gidrometeoizdat, 1964. 296 p. (in Russian).

32. Voltcinger N. E., Klevanny K. A., Pelinovsky E. N. Long-wave dynamics of the coastal zone. L., Gidrometeoizdat, 1989. 273 p. (in Russian).

33. Marchuk G. I., Dymnikov V. P., Zalesny V. B. Mathematical models in the geophysical hydrodynamics and numerical methods of their realization L., Gidrometeoizdat, 1987. 296 p. (in Russian).

34. Blayo E., Debreu L. Revisting open boundary conditions from the point of view of characteristic variables. Ocean Modelling J. 2007, 9, 231—252.

35. Androsov A. A., Voltcinger N. E., Vager B. G. Spectral method of the hydrodynamic models with the open boundary construction. Vestn. Civil. Eng. 2012, 1(30), 218—223 (in Russian).

36. Sundstrom A., Elvius T. 1979: Computational problems related to limited-area modeling. Numerical Methods in Atmospheric Models, Volume II, GARP Publications.

37. Palma E. D., Matano R. P. On the implementation of open boundary conditions for a general circulation model & The threedimensional case. Jeophys. Res. J. 2000, 105, C4, 8605—8627.

38. Enquist B., Maida A. Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. J. 1977, 31(139), 629—651.

39. Marchesiello P., Mc Williams J. C., Shchepetkin A. Open boundary conditions for long-term integration of regional oceanic models. Ocean Modelling. J. 2001, 3, 1, 1—20.

40. Martinsen A., Egendahl H. Y. Implementation and testing of a lateral boundar y scheme as an open boundary condition in a barotropic ocean model. Coastal Eng. J. 1987, 11, 603—627.

41. Androsov A. A., Voltcinger N. E. Straits of the World Ocean: General approach to the modelling. SPb., Nauka, 2005. 187 p. (in Russian).

42. Gresho P. M., Chan S. Solving the incompressible Navier-Stokes equations using consistence mass and pressure Poisson equation. Proc. ASME Symp. Rec, Adv, Comp, Fl. Dyn. AMD. 1988, 93, 31—74.

43. Chorin A. J. A numerical solution for solving incompressible viscous flow problem. Comp. Phys. J. 1967, 2, 12—26.

44. Temam R. Sur l’approximation de la solution des equations de Navier-Stokes par la methods des pas fracttionnaires. Arc. Ration. Mach. Anal. 1969, 32, 377—385.

45. Kaniadakis G., Israeli M., Orshag S. High-order splitting methods for the incompressible Navier-Stokes equatios. Comp. Phys. J. 1991, 97, 2, 414—443.

46. Patanca S. V., Spalding D. V. A calculation procedure for heat, mass and momentum in three dimensional parabolic flows. Int. J. Heat Mass. Transf. 1972, 19, 10, 1787—1806.

47. Salery F., Gervasio P. Quarteroni Spectral approximation of Navier-Stokes equations. Universita delgi Studia di Milano. 1998, 56 p.

48. Gottlib D., Orshag S.A. Numerical analysis of spectral methods. Theory and applications. NSF-CBms Monogr. SIAM J. 1977, 26.

49. Fletcher K. Computational Galerkin Methods. Springer, 1984, 319 p.

50. Strang G., Fix G. An analysis of the finite element method. Prentice Hall,1973, 349 p.

51. Wong A. K., Reizes J. A. The vector potential in the numerical solution of three-dimensional fluid dynamics problems in multiply connected regions. Comput. Phys. J. 1986, 62, 124—142.

52. Androsov A. A., Voltcinger N. E., Vager B. G. Comparison of accuracy and effiency of finite element method and boundary-fitted coordinate method in the hydrodynamic modelling. Vestn. Civil. Eng. 2011, 2(27), 179—186 (in Russian).

53. Massman S., Androsov A., Danilov S. Intercomparison between finite-volume approaches to model North Sea tides. Cont. Shelf Res. J. 2010, 30, 680—691.

54. Turek S. A comparative study of time-stepping techniques for the incompressible Navier-Stokes equations: from fully implicit nonlinear schemes to semi-implicit projection methods. Int. J. for Numer. Meth. Fluids. 1996, 22, 987—1011.

55. Briley W. K., Mc Donald H. Three-dimensional viscous flows with large secondary velocity. Fluid Mech. J. 1984, 144, 47—77.

56. Peyret R., Naylor T. D. Computational methods for fluid flow. NY., Springer Verlag, 1984, 350 p.

57. Kim J., Moin P. Application of a fractional-step method to incompressible Navier-Stokes equations. Comp. Phys. J. 1985, 59, 308—323.

58. Simo J. C., Armero F. Spectral stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equetions. Comp. Phys. Appl. Mech. Eng. J. 1992, 111, 111—154.

59. Rannacher R. On Chorin projection method for incompressible Navier-Stokes equations // The Navier-Stokes eqations. II Theory and Numerical Methods. Ed. Routmann et al. Springer, 1982, 167—183.

60. Van Kan J. A second order accurate schemes for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 1986, 7(3), 870—891.

61. Pinelli A., Vacca A. Quarteroni A. A spectral multidomain methods for the numerical simulation of turbulent flows. Com. Phys. J. 1997, 136, 546—558.

62. Ku H. C., Hirsh R. C., Taylor T. D. Pseudospectral Method for solution of the Three Dimensial Incompressible Navier-Stokes Equations. Comp. Phys. J. 1987, 70, 439—462.

63. Chen X. A fully hydrodynamic model for three-dimensional free-surface flows. Int. J. for Numer. Meth. Fluids. 2003, 43, 29— 952.

64. Kocyigit M. B., Falconer A., Lin B. Three-dimensional numerical modelling of free-surface flows with non-hydrostatic pressure. Int. J. for Numer. Meth. Fluids. 2002.

65. Lin P., Li C. W. A σ-coordinate three-dimensional model for surface wave propagation. Int. J. for Numer. Meth. Fluids. 2002, 38, 1045—1068.

66. Voltcinger N. E., Androsov A. A. Modelling coastal hydrodynamics generated by a landslide. Fund. Appl. Hydroph. 2015, 8, 2, 10—21 (in Russian).

67. Gaberano F., Cannuto G., Lasoponara E., Petrelli G. A new three-dimensional finite-volume non-hydrostatic schock-capturing model fot free-surface flow. Hydrodyn. J. 2017, 29, 4, 552—556.

68. Ford R., Pain C. C., Pigotti M. D., Coddard A. J. H., de Olivera C. R., Umplebi A. P. A non-hydrostatic finite-element model for three dimensional stratified oceanic flows. Model formulation. Mon. Weath. Rev. J. 2004, 132, 2816—2831.

69. Fringer O. B., Gerritsen M., Street R. L. An unstructured grid finite-element volume, nonhydrostatic, parralled coastal ocean simulator. Ocean. Model. J. 2006, 14, 139—173.

70. Klevanny K. A., Matveev G. V., Voltzinger N. E. “CARDINAL” — coastal area dynamics investigation algorithm. Ann. Geophys. Part II — Oceans, Atm., Hydr. and non-linear Geophys. 1992, 10, 188.

71. Klevanny K. A., Matveev G. V., Voltzinger N. E. An integrated modeling system for coastal area dynamics. Int. J. for Numer. Meth. Fluids. 1994, 19, 181—206.

72. Ladyzhenskaya O. A. The mathematical theory of viscous incompressible flows. Gordon & Breach. 1963. 203 p.

73. Jankovsky J. A. A non-hydroststic model for free-surface flows. Univ. Yannover, 1999.

74. Westernik J. J., Luettich R. A., Blain C. A., Sheffner N. W. ADCLRC: An Advanced Three-dimensional Circulation Model for shelves, coasts and estuaries. Rep.2. Users manual. Contractors report to the US Army Corps of Engin. 1992, Wash.

75. Zhang Y., Baptista A. M. A semi-implicit Euler-Lagrangian finite-element model for cross-scale ocean circulation. Ocean Model. J. 2008, 21, 71—96.

76. Cassuli V., Walters R. A. Anunstructured grid, three-dimensional model based on the shallow water equations. Int. J. for Numer. Meth. Fluids. 2000, 32, 331—348.

77. Danilov S., Androsov A. Cell-vertex discretization of shallow water equations on mixed unstructured meshes. Ocean Dyn. J. 2015, 65(1), 33—47.

78. Mahadevan A., Archer D. Modeling a limite region of the ocean. Comp. Phys. J. 1998, 145, 555—574.


Review

For citations:


Voltzinger N.E., Androsov A.A., Klevannyy K.A., Safrai A.S. Oceanological Models of Non Hydrostatic Dynamics: A Review. Fundamental and Applied Hydrophysics. 2018;11(1):3-20. (In Russ.) https://doi.org/10.7868/S207366731801001X

Views: 142


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)