Modelling Long-Wave Dynamics on the Continental Slope of the Ocean and Areas of Sharp Depth Variation
https://doi.org/10.7868/S2073667320040024
Abstract
On an idealized 2D-cross-section of the continental slope, the situation in the polar regions is simulated — dense water falls to the seafloor from the continental shelf. On the solutions of two problems in the hydrostatic approximation and in the complete nonhydrostatic formulation, the dynamic characteristics of the process are compared: the fields of velocity, pressure, motion and the structure of the dense lens of water. The same comparison is carried out on the solution of the model problem of gravitational adaptation to equilibrium — an immanent line of dynamics on the continental slope. Based on the results of 3D-modelling of the dynamics and hydrology of the Lombok Strait (Indonesian Archipelago), the fields of hydrostatic and nonhydrostatic vertical velocity are compared at the slope of the strait. The simulation result of the vertical velocity and its spectra in the tidal cycle of the M2 wave are presented. The comparison shows the inadequacy of modelling slope dynamics in the hydrostatic approximation.
About the Authors
N. E. VoltzingerRussian Federation
117997, Nahimovsky Pr., 36, Moscow
A. A. Androsov
Russian Federation
117997, Nahimovsky Pr., 36, Moscow, Russia
Am Handelshafen 12, 27570 Bremerhaven, Germany
References
1. Whitham G.B. Linear and nonlinear waves. Moscow, Mir, 1977. 622 p. (in Russian).
2. Gill A. Dynamics of the atmosphere and ocean. Mosсow, Mir, 1986. 398 p. (in Russian).
3. Pelinovsky E.N. Hydrodynamic of the tsunami wave. IPF RAN, Nizhny Novgorod, 1996. 274 p. (in Russian).
4. Marchuk G.I., Kagan B.A. Dynamics of ocean tides. Leningrad, Gidrometeoizdat, 1983. 359 p. (in Russian).
5. Voltzinger N.E., Androsov A.A. Nonhydrostatic tidal dynamics in the area of a seamount. Oceanology. 2016, 56, 4, 491–500. doi: 10.1134/S0001437016030243
6. Voltzinger N.E., Androsov A.A. Nonhydrostatic dynamics of straits of the World Ocean. Fundam. Prikl. Gidrofiz. 2016, 9, 1, 26–40 (in Russian).
7. Ivanov V.V., Shapiro G.I., Huthnance J.M., Aleynik D.L., Golovin P.N. Cascades of dense water around the world ocean. Progress in Oceanography. 2004, 60(1), 47–98. doi: 10.1016/j.pocean.2003.12.002
8. Jones E.P., Rudels B., Anderson L.G. Deep waters of the Arctic Ocean: origins and circulation. Deep Sea Research I. 1995, 42, 5, 737–760. doi: 10.1016/0967–0637(95)00013-V
9. Gordon A.L., Orsi A.H., Muench R., Huber B.A., Zambianchi E., Visbeck M. Western Ross Sea continental slope gravity currents. Deep Sea Research II. 2009, 56 (13–14), 796–817. doi:10.1016/j.dsr2.2008.10.037
10. Budillon G., Castagno P., Aliani S., Spezie G., Padman L. Thermohaline variability and Antarctic bottom water formation at the Ross Sea shelf break. Deep Sea Research I. 2011, 58, 10, 1002–1018. doi: 10.1016/j.dsr.2011.07.002
11. Mihanović H., Vilibié I., Carniel S., Tudor M., Russo A., Bergamasco A., Bubić N., Ljubešić Z., Viličić D., Boldrin A., Malačič V., Celio M., Comici C., and Raicich F. Exceptional dense water formation on the Adriatic shelf in the winter of 2012. Ocean Sci. 2013, 9(3), 561–572.
12. Magaldi M.G., Haine T.W.N. Hydrostatic and non-hydrostatic simulations of dense water cascading off a shelf: The East Greenland case. Deep Sea Res. Part I. 2015, 96, 89–104.
13. Whitehead J.A. Dense water off continents. Nature. 1987, 327, 656.
14. Canals M., Puig P., Durrieu de Madron, Heussner S., Palanques A., Fabres J. Flushing submarine canyons. Nature. 2006, 444(7117), 354–357.
15. Britter R., Linden P. The motion of the front of a gravity current travelling down an incline. Journal of Fluid Mechanics. 1980, 99(3), 531–543.
16. Griffiths R.W. Gravity currents in rotating systems. Ann. Rev. Fluid Mech. 1986, 18, 59–89.
17. Shapiro G.I., Huthnance J.M., Ivanov V.V. Dense water cascading off the continental shelf. J. Geophysical Research: Oceans. 2003, 108, C12.
18. Fedorov K.N. The thermohaline finestructure of the ocean. Pergamon Press, 1978. 170 p.
19. Whitehead D.S. A finite element solution of unsteady two-dimensional flow in cascades. Int. J. Numer. Meth. Fluids. 1990, 10, 13–34.
20. Condie S.A. Descent of dense water masses along continental slopes. J. Mar. Res. 1995, 53, 897–928.
21. Lane-Serff G.F., Baines P.G. Eddy formation by dense flows on slopes in a rotating fluid. J. Fluid Mech. 1998, 363, 229–253.
22. Shapiro G.I., Hill A.E. Dynamics of dence water cascades at the shelf edge. J. Phys. Oceanogr. 1997, 27(1), 2381–2394.
23. Özgökmen T.M., Chassignet E.P. Dynamics of Two-Dimensional Turbulent Bottom Gravity Currents. J. Phys. Ocean-ogr. 2002, 32, 1460–1478.
24. Özgökmen T.M., Fischer P.F., Duan J., Iliescu T. Entrainment in bottom gravity currents over complex topography from three-dimensional nonhydrostatic simulations. Geophysical Research Letters. 2004, 31, L13212.
25. Legg S., Hallberg R.W., Girton J.B. Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models. Ocean Modelling. 2006, 11(1–2), 69–97.
26. Vlasenko V., Stashchuk N., Hutter K. Baroclinic tides. Theoretical modelling and observational evidence. Cambridge University Press, 2005.
27. Hide R., Mason P.J. Sloping convection in a rotating fluids. Adv. Phys. 1975, 24, 47–100.
28. Shapiro G.I., Zatsepin A.G. Gravity currents down a steeply inclined slope in a rotating fluid. Annales Geophysicae. 1997, 15, 366–374. doi: 10.1007/s00585–997–0366-x
29. Haidvogel D., Beckmann A. Numerical ocean circulation modeling. Imper. College Press. 1999, 283–286.
30. Heggelund Y., Vikebo F., Berntsen J., Furnes G. Hydrostatic and non-hydrostatic studies of gravitational adjustment over a slope. Contin. Shelf Res. 2004, 24, 3133–3148.
31. Androsov A.A., Voltzinger N.E. The straits of World Ocean — the general approach to modeling. St. Petersburg, Nauka, 2005. 188 p.
32. Stelling G., Zijlema M. An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. Int. J. Numer. Meth. Fluids. 2003, 43, 1–23.
33. Kurkin A.A., Semin S.V., Stepanyants Y.A. Transformation of surface and internal waves over the bottom step. Review. Fundam. Prikl. Gidrofiz. 2015, 8(3), 3–19 (in Russian).
34. Xing J., Davies A. On the importance of non-hydrostatic processes in determining tidally induced mixing in sill regions. Contin. Shelf Res. 2007, 27, 2162–2185.
35. Ffield A., Cordon A.L. Tidal mixing signatures in the Indonesian Seas. J. Phys. Oceanogr. 1996, 26, 1924–1937.
36. Robertson R., Ffield A. Baroclinic tides in the Indonesian Seas. J. Geophys. Res. 2008, 113, C07031.
Review
For citations:
Voltzinger N.E., Androsov A.A. Modelling Long-Wave Dynamics on the Continental Slope of the Ocean and Areas of Sharp Depth Variation. Fundamental and Applied Hydrophysics. 2020;13(4):16-26. (In Russ.) https://doi.org/10.7868/S2073667320040024