Analysis of the characteristics of the submesoscale eddy manifestations in the Barents, the Kara and the White Seas using satellite data
https://doi.org/10.7868/S2073667319030055
Abstract
Translated by E.S. Kochetkova
The paper presents generalized results of a study on submesoscale eddies’ surface manifestations in the Barents, Kara, and White Seas based on the analysis of about 3.5 thousand satellite radar images during ice-free periods for several years from 2007 to 2012. For general features determination of submesoscale eddies’ activity against processes of larger scale, sea surface temperature data, which allowed assessment of frontal zones position, and tidal data were used the same period. About 4.5 thousand structures were registered in the investigated seas. It is shown that submesoscale eddies are a common phenomenon in the warm season in the areas of the Barents, Kara, and the White Seas. Eddy structures with a diameter from 2 to 4 km are most often registered. It has been established that the cyclonic type of eddies’ manifestations is a prevalent type of structures, while the size of anticyclonic structures is larger on average. The maximum number of eddies is observed in the initial period of formation of the seasonal near-surface pycnocline. Comparison of the positions of eddies’ surface manifestations, the frontal zone positions, and the bottom topography showed that the frequent occurrence of eddies is predominantly observed near and within the areas of the variability of the frontal zones. And also eddy structures are registered in regions where there are significant bottom irregularities. The maximum number of eddy structures in these regions was recorded principally during the period of a spring tide.
About the Authors
O. A. AtadzhanovaRussian Federation
Moscow
A. V. Zimin
Russian Federation
Moscow; St.-Petersburg; Petrozavodsk
References
1. Mahadevan A., Tandon A. An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell. 2006, 14, 241–256.
2. Thomas L.N., Tandon А., Mahadevan А. Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr. Ser. 2008, 177, 17–38.
3. Kostyanoj A.G., Ginzburg A.I., Sherement N.A., Lavrova O.Yu., Mityagina M.I. Small-scale eddies in the Black Sea. Sovremennye Problemy Distancionnogo Zondirovaniya Zemli iz Kosmosa. 2010, 7(1), 248–259 (in Russian).
4. Zatsepin A.G., Kremenetskiy V.V., Ostrovskii A.G., Baranov V.I., Kondrashov A.A., Korzh A.O., Soloviev D.M. Submesoscale eddies at the caucasus Black Sea shelf and the mechanisms of their generation. Oceanology. 2011, 51, 4, 554–567.
5. Mityagina M.I., Lavrova O.Yu. Satellite observations of eddy and wave processes in the coastal waters of the North-Eastern Black Sea. Issledovanie Zemli iz Kosmosa. 2009, 5, 72–79 (in Russian).
6. Karimova S.S. Statistical analysis of submesoscale eddies in the Baltic, Black and Caspian Seas using satellite SAR images. Issledovanie Zemli iz Kosmosa. 2012, 3, 31–47 (in Russian).
7. Karimova S., Gade M. Eddies in the Red Sea as seen by satellite SAR imagery. Remote Sensing of the African Seas. Berlin Heidelberg: Springer-Verlag, 2014, 357–378.
8. Redondo J.M., Karimova S.S. Eddy structure and patterns in the oceans and atmospheres. Proceedings Topical Problems of Fluid Mechanics, Prague. 2018, 235–242.
9. Mensa J.A., Timmermans M.-L., Kozlov I.E., Williams W.J., Özgökmen T. Surface drifter observations from the Arctic Ocean’s Beaufort Sea: Evidence for submesoscale dynamic. Journal of Geophysical Research: Oceans. 2018, 123, 2635–2645.
10. Kostyanoj A.G., Ginburg A.I., Lavrova O.Yu., Mityagina M.I. Remote sensing of submesoscale eddies in the seas of Russia. Sbornik trudov Mezhdunarodnogo simpoziuma «Mezomasshtabnye i submezomasshtabnye processy v gidrosfere i atmosfere» (MSP-2018), posvyashhennogo 90-letiyu prof. K.N. Fedorova. M.: IO RAN, 2018, 184–187 (in Russian).
11. Zhao M., Timmermans M.-L., Cole S., Krishfield R., Proshutinsky A., Toole J. Characterizing the eddy field in the Arctic Ocean halocline. Journal of Geophysical Research Oceans. 2014, 119, 12, 8800–8817.
12. Manucharyan G.E., Thompson A.F. Submesoscale sea ice‐ocean interactions in marginal ice zones. Journal of Geophysical Research: Oceans. 2017, 122, 12, 9455–9475.
13. Zimin A.V. Subtidal processes and phenomena in the White Sea. M., GEOS, 2018. 220 p (in Russian).
14. Dickey T.D., Lewis M.R., Chang G.C. Optical oceanography: recent advances and future directions using global remote sensing and in situ observations. Reviews of Geophysics. 2006, 44, 1, 1–39.
15. Nurser A.J.G., Bacon S. The Rossby radius in the Arctic Ocean. Ocean Science. 2014, 10, 6, 967–975.
16. Zimin A.V., Atadzhanova O.A., Romanenkov D.A., Kozlov I.E., Shapron B. Submesoscale eddies in the White Sea based on satellite SAR data. Issled. Zemli iz Kosmosa. 2016, 1–2, 129–135 (in Russian).
17. Romanenkov D.A., Zimin A.V., Rodionov A.A., Atadzhanova O.A., Kozlov I.E. Variability of Fronts and Features of Mesoscale Water Dynamics in the White Sea. Fundamentalnaya i Prikladnaya Gidrofizika. 2016, 9 (1), 59–72 (in Russian).
18. Atadzhanova O.A., Zimin A.V., Romanenkov D.A., Kozlov I.E. Satellite radar observations of small eddies in the White, Barents and Kara Seas. Physical Oceanography. 2017, 2, 75–83.
19. Atadzhanova O.A., Zimin A.V., Svergun E.I., Konik A.A. Submesoscale Eddy Structures and Frontal Dynamics in the Barents Sea. Physical Oceanography. 2018, 3, 220–228.
20. Kamenkovich V.M., Koshlyakov M.M., Monin A.S. Synoptic eddies in the ocean. L., Gidrometeoizdat, 1987, 511 p. (in Russian).
21. Rodionov V.B., Kostyanoj A.G. Ocean fronts of the seas of the North European basin. M., GEOS, 1998, 292 p. (in Russian).
22. Karimova S.S. About vortical structures manifestation in satellite radar images. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2010, 7, 3, 152–160 (in Russian).
23. Karimova S. Spiral eddies in the Baltic, Black and Caspian seas as seen by satellite radar data. Advances in Space Research. 2012, 50, 1107–1124.
24. Аtadzhanova O.А. Features of the submesoscale eddy dynamics of the Barents, Kara and White Seas according to satellite observations: dis. … kand. geogr. nauk: 25.00.28. IO RАN, SPb., 2019. 135 p. (in Russian).
25. Pantyulin А.N. Dynamics, structure and water masses. The system of the White Sea. Volume II The water column and the atmosphere interacting with it, the cryosphere, river runoff and biosphere. M., Nauchnyj mir, 2012, 309–379 (in Russian).
26. Vage S., Basedow S.L., Tande K.S., Zhou M. Physical structure of the Barents Sea Polar Front near Storbanken in August 2007. Journal of Marine System. 2014, 130, 256–262.
27. Pavlov V.K., Timokhov L.A., Baskakov G.A., Kulakov M.Y., Kurazhov V.K., Pavlov P.V., Pivovarov S.V., Stanovoy V.V. Hydrometeorological regime of the Kara, Laptev, and EastSiberian seas. Technical Memorandum APL–UW TM1–96, University of Washington, 1996. 179 p.
28. Kubryakov A.A., Stanichnyj S.V., Zacepin A.G., Kremeneckij V.V. The propagation of the river waters in the Black and Kara sea from satellite measurements of sea level, salinity and concentration of the chlorophylla a. E’kologicheskaya bezopasnost’ pribrezhnoj i shel’fovoj zon i kompleksnoe ispol’zovanie resursov shel’fa. Sevastopol’, MGI NANU, 2013, 27, 394–398 (in Russian).
29. Sergeeva V.M., Suxanova I.N., Druzhkova E.I., Sazhin A.F., Demidov A.B., Mosharov S.A., Kremeneckij V.V., Poluxin A.S. The structure and distribution of phytoplankton in the deep waters of the northern Kara Sea. E’kosistema Karskogo morya – novye dannye e’kspedicionnyx issledovanij. Materialy nauchnoj konferencii. M., APR, 2015, 111–115 (in Russian).
30. Zimin A.V., Konik A.A., Atadzhanova O.A. Quantitative estimations of the variability of characteristics of the temperature of the sea (SST) surface in the front of the frontal zone of the Barents Sea. Uchenye Zapiski Rossijskogo Gosudarstvennogo Gidrometeorologicheskogo Universiteta. 2018, 51, 99–108 (in Russian).
31. Konik A.A., Atadzhanova O.A., Zimin A.V. Frontal zones of the Barents and Kara Seas. Processy v Geosredakh. 2018, 3(17), 239–240 (in Russian).
Review
For citations:
Atadzhanova O.A., Zimin A.V. Analysis of the characteristics of the submesoscale eddy manifestations in the Barents, the Kara and the White Seas using satellite data. Fundamental and Applied Hydrophysics. 2019;12(3):36-45. https://doi.org/10.7868/S2073667319030055