Preview

Fundamental and Applied Hydrophysics

Advanced search

Three-Dimensional Hindcast of Nitrogen and Phosphorus Biogeochemical Dynamics in Lake Onego Ecosystem, 1985–2015. Part II: Seasonal Dynamics and Spatial Features; Integral Fluxes

https://doi.org/10.59887/fpg/9mg5-run6-4zr8

Abstract

A three-dimensional coupled hydrodynamical biogeochemical model of the nitrogen and phosphorus cycles has been used for a long-term reanalysis of the Lake Onego ecosystem. The comparison between simulation and sparse irregular observations, presented in the first part of this paper, demonstrated plausibility of the reconstructed temporal and spatial features of biogeochemical dynamics at a long-term scale, while seasonal dynamics of variables and fluxes are presented here. As new regional phonological knowledge, the reanalysis quantifies that the spring phytoplankton bloom, previously overlooked, reaches a maximum of 500 ± ± 128 mg C m–2 d–1 in May, contributes to approximately half of the lake’s annual primary production of 17.0–20.6 g C m–2 yr–1, and is triggered by increasing light availability rather than by an insignificant rise in water temperature. Coherent nutrient budgets provide reliable estimates of phosphorus and nitrogen residence times of 47 and 17 years, respectively. The shorter nitrogen residence time is explained by sediment denitrification, which in Lake Onego removes over 90 % of the bioavailable nitrogen input, but is often ignored in studies of other large lakes. An overall assessment of the model performance allows us considering the model a necessary and reliable tool for scenario simulations of possible changes in the Lake Onego ecosystem at the requested spatial and temporal scales.

About the Authors

O. P. Savchuk
Baltic Nest Institute, Stockholm University Baltic Sea Centre
Sweden

Stockholm, 10691



A. V. Isaev
Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

117997, Nahimovsky Pr., 36, Moscow



N. N. Filatov
Northern Water Problems Institute, Karelian Research Center, Russian Academy of Sciences
Russian Federation

185030, Pr. Al. Nevskogo, 50, Petrozavodsk



References

1. Meier H.E.M., Kniebusch M., Dieterich C., et al. Climate change in the Baltic Sea region: a summary. Earth System Dynamics. 2022, 13, 1, 457–593. doi:10.5194/esd-13-457-2022

2. Reckermann M., Omstedt A., Soomere T., et al. Human impacts and their interactions in the Baltic Sea region. Earth System Dynamics. 2022, 13, 1, 1–80. doi:10.5194/esd-13-1-2022

3. Di Toro D.M., Connolly J.P. Mathematical models of water quality in large lakes. Lake Erie eutrophication of waters: Monitoring. Assessment and Control, Paris, OECD, 1982. 154 p.

4. Straskraba M., Gnauck A. Freshwater ecosystems. Modelling and simulation. Elsevier Science Publishers, Amsterdam, 1985.

5. Mooij W.M., Trolle D., Jeppesen E., et al. Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquatic Ecology. 2010, 44, 3, 633–667. doi:10.1007/s10452-010-9339-3

6. Vinçon-Leite B., Casenave C. Modelling eutrophication in lake ecosystems: A review. Science of the Total Environment. 2019, 651, 2985–3001. doi:10.1016/j.scitotenv.2018.09.139

7. Menshutkin V.V., Vorobieva O.N. A model of the ecological system of Lake Ladoga. The current state of the ecosystem of Lake Ladoga. Editor N.A..Petrova, G.F. Raspletina. Leningrad, Nauka, 1987, 187–200 p. (In Russian).

8. Rukhovets L., Filatov N. Ladoga and Onego — Great European Lakes: Observations and Modeling. Berlin Heidelberg, Springer-Verlag, 2010. doi:10.1007/978-3-540-68145-8

9. Filatov N.N. (Editor): Diagnosis and forecast of thermohydrodynamics and ecosystems of the Great Lakes of Russia. Karelian Research Center of the Russian Academy of Sciences. Petrozavodsk, 2020 (In Russian).

10. Isaev A.V., Savchuk O.P. Diagnosis of the Lake Ladoga ecosystem and prognosis of its evolution under possible climate change by the means of mathematical modelling of the biogeochemical fluxes. Diagnosis and forecast of thermohydrodynamics and ecosystems great lakes of Russia, edited by: Filatov N.N. Karelian Research Center of the Russian Academy of Sciences. Petrozavodsk, 2020 (In Russian).

11. Isaev A.V., Savchuk O.P., Filatov N.N. Three-dimensional hindcast ofnitrogen and phosphorus biogeochemical dynamics in Lake Onego ecosystem, 1985–2015. Part I: Long-term dynamics and spatial distribution. Fundamental and Applied Hydrophysics. 2022, 15, 2, 76–97. doi:10.48612/fpg/e1m2-63b5-rhvg

12. Vehmaa A., Salonen K. Development of phytoplankton in Lake Pääjärvi (Finland) during under-ice convective mixing period. Aquatic Ecology. 2009, 43, 3, 693–705. doi:10.1007/s10452-009-9273-4

13. Hampton S.E., Moore M.V., Ozersky T., et al. Heating up a cold subject: prospects for under-ice plankton research in lakes. Journal Of Plankton Research. 2015, 37, 2, 277–284. doi:10.1093/plankt/fbv002

14. Hampton S.E., Galloway A.W.E., Powers S.M., et al. Ecology under lake ice. Ecology Letters. 2017, 20, 1, 98–111. doi:10.1111/ele.12699

15. Salmi P., Salonen K. Regular build-up of the spring phytoplankton maximum before ice-break in a boreal lake. Limnology and Oceanography. 2016, 61, 1, 240–253. doi:10.1002/lno.10214

16. Maier D.B., Diehl S., Bigler C. Interannual variation in seasonal diatom sedimentation reveals the importance of late winter processes and their timing for sediment signal formation. Limnology and Oceanography. 2019, 64, 3, 1186–1199. doi:10.1002/lno.11106

17. Yang B., Wells M.G., Li J., Young J. Mixing, stratification, and plankton under lake-ice during winter in a large lake: Implications for spring dissolved oxygen levels. Limnology and Oceanography. 2020, 65, 11, 2713–2729. doi:10.1002/lno.11543

18. Shchur L.A., Bondarenko N.A. Comparative analysis of phytoplankton of the Baikal and Khanka Lakes. Hydrobiological Journal. 2012, 48, 3. doi:10.1615/HydrobJ.v48.i3.20

19. Sterner R.W. In situ-measured primary production in Lake Superior. Journal of Great Lakes Research. 2010, 36, 1, 139–149. doi:10.1016/j.jglr.2009.12.007

20. Urban N.R., Auer M.T., Green S.A., et al. Carbon cycling in Lake Superior. Journal of Geophysical Research: Oceans. 2005, 110, C6. doi:10.1029/2003JC002230

21. Bennington V., McKinley G.A., Urban N.R., et al. Can spatial heterogeneity explain the perceived imbalance in Lake Superior’s carbon budget? A model study. Journal of Geophysical Research: Biogeosciences. 2012, 117, G3. doi:10.1029/2011JG001895

22. Urban N.R. Nutrient cycling in Lake Superior: A retrospective and update. State of Lake Superior. Michigan State University Press, 2009.

23. Adams M.S., Meinke T.W., Kratz T.K. Primary productivity of three Wisconsin LTER lakes, 1985–1990. SIL Proceedings, 1922–2010. Taylor & Francis. 1993, 25, 1, 406–410. doi:10.1080/03680770.1992.11900149

24. Fahnenstiel G., Pothoven S., Vanderploeg H., et al. Recent changes in primary production and phytoplankton in the offshore region of southeastern Lake Michigan. Journal of Great Lakes Research. 2010, 36, 20–29. doi:10.1016/j.jglr.2010.03.009

25. Tekanova E.V., Syarki M.T. Peculiarities of phenology of the primary production process in the pelagic zone of Lake Onega. Biology Bulletin. 2015, 42, 6, 556–562. doi:10.1134/S1062359015060114

26. Bunting L., Leavitt P.R., Simpson G.L., et al. Increased variability and sudden ecosystem state change in Lake Winnipeg, Canada, caused by 20th century agriculture. Limnology and Oceanography. 2016, 61, 6, 2090–2107. doi:10.1002/lno.10355

27. Kalinkina N., Belkina N. Dynamics of benthic communities’ state and the sediment chemical composition in Lake Onega under the influence of anthropogenic and natural factors. Principy Ekologii. 2018, 7, 56–74 (in Russian). doi:10.15393/j1.art.2018.7643

28. Syarki M.T., Tekanova E.V. Seasonal primary production cycle in Lake Onega. Biology Bulletin. 2008, 35, 5, 536–540. doi:10.1134/S1062359008050166

29. Jansen J., MacIntyre S., Barrett D.C., et al. Winter limnology: How do hydrodynamics and biogeochemistry shape ecosystems under ice? Journal of Geophysical Research: Biogeosciences. 2021, 126, 6, e2020JG006237. doi:10.1029/2020JG006237

30. Fahnenstiel G.L., Scavia D. Dynamics of Lake Michigan phytoplankton: the deep chlorophyll layer. Journal of Great Lakes Research. 1987, 13, 3, 285–295. doi:10.1016/S0380-1330(87)71652-9

31. Rowe M.D., Anderson E.J., Wang J., Vanderploeg H.A. Modelling the effect of invasive quagga mussels on the spring phytoplankton bloom in Lake Michigan. Journal of Great Lakes Research. 2015, 41, 49–65. doi:10.1016/j.jglr.2014.12.018

32. Boedecker A.R., Niewinski D.N., Newell S.E., et al. Evaluating sediments as an ecosystem service in western Lake Erie via quantification of nutrient cycling pathways and selected gene abundances. Journal of Great Lakes Research. 2020, 46, 4, 920–932. doi:10.1016/j.jglr.2020.04.010

33. Vahtera E., Conley D.J., Gustafsson B.G., et al. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. AMBIO. 2007, 36, 2, 186–194. doi:10.1579/0044-7447(2007)36[186:IEFENC]2.0.CO;2

34. Savchuk O.P. Large-scale nutrient dynamics in the Baltic Sea, 1970–2016. Frontiers Marine. Science. 2018, 5, 95. doi:10.3389/fmars.2018.00095

35. Schindler D.W., Hecky R.E., McCullough G.K. The rapid eutrophication of Lake Winnipeg: Greening under global change. Journal of Great Lakes Research. 2012, 38, 6–13, doi:10.1016/j.jglr.2012.04.003

36. Zhang W., Rao Y.R. Application of a eutrophication model for assessing water quality in Lake Winnipeg. Journal of Great Lakes Research. 2012, 38, 158–173. doi:10.1016/j.jglr.2011.01.003

37. Sterner R.W., Reinl K.L., Lafrancois B.M. et al. A first assessment of cyanobacterial blooms in oligotrophic Lake Superior. Limnology and Oceanography. 2020, 65, 12, 2984–2998. doi:10.1002/lno.11569

38. Howarth R.W., Chan F., Swaney D.P. et al. Role of external inputs of nutrients to aquatic ecosystems in determining prevalence of nitrogen vs. phosphorus limitation of net primary productivity. Biogeochemistry. 2021. doi:10.1007/s10533-021-00765-z

39. Efremova T.A., Sabylina A.V., Lozovik P.A. et al. Seasonal and spatial variation in hydrochemical parameters of Lake Onego (Russia): insights from 2016 field monitoring. Inland Waters. 2019, 9, 2, 227–238. doi:10.1080/20442041.2019.1568097

40. Galakhina N., Zobkov M., Zobkova M. Current chemistry of Lake Onego and its spatial and temporal changes for the last three decades with special reference to nutrient concentrations. Environmental Nanotechnology, Monitoring & Management. 2022, 17, 100619, doi:10.1016/j.enmm.2021.100619

41. Savchuk O.P. Nutrient biogeochemical cycles in the Gulf of Riga: scaling up field studies with a mathematical model. Journal of Marine Systems. 2002, 32, 4, 253–280. doi:10.1016/S0924-7963(02)00039-8

42. Savchuk O.P. Resolving the Baltic Sea into seven subbasins: N and P budgets for 1991–1999. Journal of Marine Systems. 2005, 56, 1, 1–15. doi:10.1016/j.jmarsys.2004.08.005

43. Savchuk O.P. Large-scale nutrient dynamics in the Baltic Sea, 1970–2016. Frontiers Marine Sciences. 2018, 5, 95. doi:10.3389/fmars.2018.00095

44. Lozovik P.A., Borodulina G.S., Karpechko Y.V., et al. Nutrient load on lake Onego according to field data. Proceedings of the Karelian Research Centre of the Russian Academy of Sciences. 2016, 5, 35–52 (In Russian). doi:10.17076/lim303

45. Strakhovenko V.D., Belkina N.A., Efremenko N.A., et al. The first data on the mineralogy and geochemistry of the suspension of lake Onega. Geologia i Geofisika. 2022, 1, 68–86 (In Russian). doi:10.15372/GiG2020198

46. Finlay J.C., Sterner R.W., Kumar S. Isotopic evidence for in-lake production of accumulating nitrate in Lake Superior. Ecological Applications. 2007, 17, 8, 2323–2332. doi:10.1890/07-0245.1

47. Scavia D., Allan J.D., Arend K.K., et al. Assessing and addressing the re-eutrophication of Lake Erie: Central basin hypoxia. Journal of Great Lakes Research. 2014, 40, 2, 226–246. doi:10.1016/j.jglr.2014.02.004

48. Saunders D.L., Kalff J. Denitrification rates in the sediments of Lake Memphremagog, Canada — USA. Water Research. 2001, 35, 8, 1897–1904. doi:10.1016/S0043-1354(00)00479-6

49. Small G.E., Finlay J.C., McKay R.M.L., et al. Large differences in potential denitrification and sediment microbial communities across the Laurentian great lakes. Biogeochemistry. 2016, 128, 3, 353–368. doi:10.1007/s10533-016-0212-x

50. Small G.E., Cotner J.B., Finlay J.C., et al. Nitrogen transformations at the sediment — water interface across redox gradients in the Laurentian Great Lakes. Hydrobiologia. 2014, 731, 1, 95–108. doi:10.1007/s10750-013-1569-7

51. Nürnberg G.K., LaZerte B.D. More than 20years of estimated internal phosphorus loading in polymictic, eutrophic Lake Winnipeg, Manitoba. Journal of Great Lakes Research. 2016, 42, 1, 18–27. doi:10.1016/j.jglr.2015.11.003

52. Ignatieva N.V. Distribution and release of sedimentary phosphorus in Lake Ladoga. Hydrobiologia. 1996, 322, 1, 129–136. doi:10.1007/BF00031817


Review

For citations:


Savchuk O.P., Isaev A.V., Filatov N.N. Three-Dimensional Hindcast of Nitrogen and Phosphorus Biogeochemical Dynamics in Lake Onego Ecosystem, 1985–2015. Part II: Seasonal Dynamics and Spatial Features; Integral Fluxes. Fundamental and Applied Hydrophysics. 2022;15(2):98-109. https://doi.org/10.59887/fpg/9mg5-run6-4zr8

Views: 379


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)