Three-Dimensional Hindcast of Nitrogen and Phosphorus Biogeochemical Dynamics in Lake Onego Ecosystem, 1985–2015. Part I: Long-Term Dynamics and Spatial Distribution
https://doi.org/10.59887/fpg/e1m2-63b5-rhvg
Abstract
Despite a wide-ranging research, there is almost no information regarding the major biogeochemical fluxes that could characterize the past and present state of the European Lake Onego ecosystem and be used for reliable prognostic estimates of its future. To enable such capacity, we adapted and implemented a three-dimensional coupled hydrodynamical biogeochemical model of the nutrient cycles in Lake Onego. The model was used to reconstruct three decades of Lake Onego ecosystem dynamics with daily resolution on a 2 × 2 km grid. A comparison with available information from Lake Onego and other large boreal lakes proves that this hindcast is plausible enough to be used as a form of reanalysis. This model will be used as a form of studies of Lake Onego ecosystem, including long-term projections of ecosystem evolution under different scenarios of climate change and socio-economic development.
About the Authors
A. V. IsaevRussian Federation
117997, Nahimovsky Pr., 36, Moscow
O. P. Savchuk
Sweden
Stockholm, 10691, Sweden
N. N. Filatov
Russian Federation
185030, Pr. Al. Nevskogo, 50, Petrozavodsk
References
1. Rukhovets L., Filatov N. Ladoga and Onego — Great European Lakes: Observations and modeling. Berlin Heidelberg, Springer-Verlag, 2010. doi:10.1007/978-3-540-68145-8
2. Filatov N., Rukhovets L. Ladoga Lake and Onego Lake (Lakes Ladozhskoye and Onezhskoye). Encyclopedia of lakes and reservoirs. Ed. Bengtsson L., Herschy R.W., Fairbridge R.W. Dordrecht: Springer Netherlands, 2012, 429–432. doi:10.1007/978–1–4020–4410–6_197
3. Kalinkina N., Tekanova E., Korosov A., et al. What is the extent of water brownification in Lake Onego, Russia? Journal of Great Lakes Research. 2020, 46, 4, 850–861. doi:10.1016/j.jglr.2020.02.008
4. Howarth R.W., Chan F., Swaney D.P. et al. Role of external inputs of nutrients to aquatic ecosystems in determining prevalence of nitrogen vs. phosphorus limitation of net primary productivity. Biogeochemistry. 2021, 154, 293–306. doi:10.1007/s10533–021–00765-z
5. Käyhkö J., Apsite E., Bolek A. et al. Recent change — river run-off and ice cover. Second assessment of climate change for the Baltic Sea Basin. Ed. The BACC II Author Team. Cham, Springer International Publishing, 2015, 99–116. doi:10.1007/978–3–319–16006–1_5
6. Filatov N.N., Kalinkina N.M., Tekanova E.V. Modern changes in the ecosystem of Lake Onego with climate warming. Limnology and Freshwater Biology. 2018, 15–17. doi:10.31951/2658–3518–2018-A-1–15
7. Filatov N., Baklagin V., Efremova T. et al. Climate change impacts on the watersheds of Lakes Onego and Ladoga from remote sensing and in situ data. Inland Waters. Taylor & Francis. 2019, 9, 2, 130–141. doi:10.1080/20442041.2018.1533355
8. Saraiva S., Meier H.E.M., Andersson H. et al. Baltic Sea ecosystem response to various nutrient load scenarios in present and future climates. Climate Dynamics. 2019, 52, 3369–3387. doi:10.1007/s00382-018-4330-0
9. Meier H.E.M., Edman M., Eiola K., et al. Assessment of uncertainties in scenario simulations of biogeochemical cycles in the Baltic Sea. Frontiers in Marine Science. 2019, 6, 46. doi:10.3389/fmars.2019.00046
10. Zandersen M., Hyytiäinen K., Meier H.E.M., et al. Shared socio-economic pathways extended for the Baltic Sea: exploring long-term environmental problems. Regional Environmental Change. 2019, 19, 4, 1073–1086. doi:10.1007/s10113-018-1453-0
11. Okrepilov V.V., Kuznetsov S.V., Lachininskii S.S. Priorities of economic development of the northwest regions in the context of spatial development of Russia. Studies on Russian Economic Development. 2020, 31, 2, 181–187. doi:10.1134/S1075700720020069
12. Pihlainen S., Zandersen M., Hyytiäinen K., et al. Impacts of changing society and climate on nutrient loading to the Baltic Sea. Science of The Total Environment. 2020, 731, 138935. doi:10.1016/j.scitotenv.2020.138935
13. BACC II Author Team [ed]: Second assessment of climate change for the Baltic Sea Basin. Regional climate studies. Springer International Publishing. 2015. doi:10.1007/978-3-319-16006-1.
14. McCrackin M.L., Muller-Karulis B., Gustafsson B., et al. A century of legacy phosphorus dynamics in a Large Drainage Basin. Global Biogeochemical Cycles. 2018, 32, 7, 1107–1122. doi:10.1029/2018GB005914
15. Bartosova A., Capell R., Olesen J.E. et al. Future socioeconomic conditions may have a larger impact than climate change on nutrient loads to the Baltic Sea. Ambio. 2019, 48, 11, 1325–1336. doi:10.1007/s13280-019-01243-5
16. Sterligova O.P., Ilmast N.V., Kuchko Ya.A., et al. State of freshwater reservoirs in Karelia with commercial cultivation of rainbow trout in cages. Federal Research Center “Karelian Research Center of the Russian Academy of Sciences”, Institute of Biology, KarRC RAS. Petrozavodsk, Karelian Scientific Center of the Russian Academy of Sciences, 2018. 125 p. (In Russian).
17. Schindler D.W., Hecky R.E., McCullough G.K. The rapid eutrophication of Lake Winnipeg: Greening under global change. Journal of Great Lakes Research. 2012, 38, 6–13. doi:10.1016/j.jglr.2012.04.003
18. Di Toro D.M., Connolly J.P. Mathematical models of water quality in large lakes. Lake Erie eutrophication of waters: Monitoring. Assessment and control. Paris: OECD, 1982, 154 p.
19. Straskraba M., Gnauck A. Freshwater ecosystems. Modelling and simulation. Elsevier Science Publishers, Amsterdam, 1985.
20. Mooij W.M., Trolle D., Arhonditsis G. et al. Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquatic Ecology. 2010, 44, 3, 633–667. doi:10.1007/s10452-010-9339-3
21. Zhang W., Rao Y.R. Application of a eutrophication model for assessing water quality in Lake Winnipeg. Journal of Great Lakes Research. 2012, 38, 158–173. doi:10.1016/j.jglr.2011.01.003
22. Zhang W., Watson S.B., Rao Y.R., et al. A linked hydrodynamic, water quality and algal biomass model for a large, multi-basin lake: A working management tool. Ecological Modelling. 2013, 269, 37–50. doi:10.1016/j.ecolmodel.2013.08.018
23. Bocaniov S.A., Lamb K.G., Liu W., et al. High sensitivity of lake hypoxia to air temperatures, winds and nutrient loading: Insights from a 3D lake model. Water Resources Research. 2020, 56, 12. doi:10.1016/j.jglr.2016.06.001
24. Scavia D., DePinto J.V., Bertani I. A multi-model approach to evaluating target phosphorus loads for Lake Erie. Journal of Great Lakes Research. 2016, 42, 6, 1139–1150. doi:10.1016/j.jglr.2016.09.007
25. Vinçon-Leite B., Casenave C. Modelling eutrophication in lake ecosystems: A review. Science of the Total Environment. 2019, 651, 2985–3001. doi:10.1016/j.scitotenv.2018.09.139
26. Menshutkin V.V., Vorobieva O.N. A model of the ecological system of Lake Ladoga. The current state of the ecosystem of Lake Ladoga. Ed. N.A. Petrova, G.F. Raspletina. Leningrad, Nauka, 1987, 187–200 (In Russian).
27. Astrakhantsev G.P., Yegorova N.B., Menshutkin V.V., et al. Mathematical model for the ecosystem response of Lake Ladoga to phosphorus loading. The First International Lake Ladoga Symposium, Dordrecht, 1996, 153–157. doi:10.1007/978-94-009-1655-5_24
28. Menshutkin V.V., Astrakhantsev G.P., Yegorova N.B., et al. Mathematical modelling of the evolution and current conditions of the Ladoga Lake ecosystem. Ecological Modelling. 1998, 107, 1–24. doi:10.1016/S0304-3800(97)00184-1
29. Rukhovets L.A., Astrakhantsev G.P., Menshutkin V.V., et al. Development of Lake Ladoga ecosystem models: modeling of the phytoplankton succession in the eutrophication process. I. Ecological Modelling. 2003, 165, 1, 49–77. doi:10.1016/S0304-3800(03)00061-9
30. Filatov N.N. (Editor): Diagnosis and forecast of thermohydrodynamics and ecosystems of the Great Lakes of Russia. Petrozavodsk, Karelian Research Center of the Russian Academy of Sciences, 2020 (in Russian).
31. Isaev A.V., Savchuk O.P. Diagnosis of the Lake Ladoga ecosystem and forecast prognosis of its evolution under possible climate change by the means of mathematical modelling of the biogeochemical fluxes. Diagnosis and forecast of thermohydrodynamics and ecosystems great lakes of Russia, edited by: Filatov N.N. Karelian Research Center of the Russian Academy of Sciences, Petrozavodsk, 2020 (In Russian).
32. Kondratyev S.A., Shmakova M.V., Golosov S.D., et al. Modelling in limnology. Experience of IL RAS. Journal of Hydrometeorology and Ecology. 2021, 65, 607–647 (In Russian). doi:10.33933/2713-3001-2021-65-607-647
33. Isaev A., Vladimirova O., Eremina T., et al. Accounting for dissolved organic nutrients in an SPBEM-2 model: Validation and verification. Water. 2020, 12, 5, 1307. doi:10.3390/w12051307
34. Kalinkina N., Belkina N. Dynamics of benthic communities state and the sediment chemical composition in Lake Onega under the influence of anthropogenic and natural factors. Principy Ekologii. 2018, 7, 56–74 (in Russian). doi:10.15393/ j1.art.2018.7643
35. Ehrnsten E., Sun X., Humborg C., et al. Understanding environmental changes in temperate coastal seas: Linking models of benthic fauna to carbon and nutrient fluxes. Frontiers in Marine Science. 2020, 7. doi:10.3389/fmars.2020.00450
36. Ciavatta S., Kay S., Saux-Picart S., et al. Decadal reanalysis of biogeochemical indicators and fluxes in the North West European shelf-sea ecosystem. Journal of Geophysical Research: Oceans. 2016, 121, 3, 1824–1845. doi:10.1002/2015JC011496
37. Liu Y., Meier H.E.M., Eilola K. Nutrient transports in the Baltic Sea — results from a 30-year physical — biogeochemical reanalysis. Biogeosciences. 2017, 14, 8, 2113–2131. doi:10.5194/bg-14-2113-2017
38. Fennel K., Gehlen M., Brasseur P., et al. Advancing marine biogeochemical and ecosystem reanalyses and forecasts as tools for monitoring and managing ecosystem health. Frontiers in Marine Science. 2019, 6, 89. doi:10.3389/fmars.2019.00089
39. Kõuts M., Maljutenko I., Liu Y., et al. Nitrate, ammonium and phosphate pools in the Baltic Sea. Copernicus Marine Service Ocean State Report, Issue 5. Journal of Operational Oceanography. 2021, 37–48. doi:10.1080/1755876X.2021.1946240
40. Belyaev V.I. Mathematical modelling of ecosystems of seas and oceans. Itogi Nauki i Tekhniki. Ser. General ecology. Biocenology. Hydrobiology. 1980, 5, 105–153 (in Russian).
41. Savchuk O.P., Isaev A.V., Filatov N.N. Three-dimensional hindcast of nitrogen and phosphorus biogeochemical dynamics in Lake Onego ecosystem, 1985–2015 Part II. Seasonal dynamics and spatial features; integral fluxes. Fundamental and Applied Hydrophysics. 2022, 15, 2. doi:10.48612/fpg/9mg5-run6-4zr8
42. Ryabchenko V.A., Karlin L.N., Isaev A.V., et al. Model estimates of the eutrophication of the Baltic Sea in the contemporary and future climate. Oceanology. 2016, 56, 1, 36–45. doi:10.1134/S0001437016010161
43. Savchuk O.P. Nutrient biogeochemical cycles in the Gulf of Riga: scaling up field studies with a mathematical model. Journal of Marine Systems. 2002, 32, 4, 253–280. doi:10.1016/S0924–7963(02)00039–8
44. Savchuk O.P., Gustafsson Bo G., Muller-Karulis B. BALTSEM — a marine model for decision support within the Baltic Sea region. Stockholm University. 2012. Technical Report 7.
45. Meier H.E.M., Edman M.K., Eilola K.J., et al. Assessment of eutrophication abatement scenarios for the Baltic Sea by multi-model ensemble simulations. Frontiers in Marine Science. 2018, 5, 440. doi:10.3389/fmars.2018.00440
46. Gustafsson E., Savchuk O., Gustafsson B., et al. Key processes in the coupled carbon, nitrogen, and phosphorus cycling of the Baltic Sea. Biogeochemistry. 2017, 134, 3, 301–317. doi:10.1007/s10533–017–0361–6
47. Gustafsson E., Deutsch B., Gustafsson B.G., Humborg C., Mörth C.-M. Carbon cycling in the Baltic Sea — The fate of allochthonous organic carbon and its impact on air–sea CO2 exchange. Journal of Marine Systems. 2014, 129, 289–302. doi:10.1016/j.jmarsys.2013.07.005
48. Sabylina A.V., Lozovik P.A., Zobkov M.B. Water chemistry in Onega Lake and its tributaries. Water Resource. 2010, 37, 6, 842–853. doi:10.1134/S0097807810060102
49. Efremova T.A., Sabylina A.V., Lozovik P.A., et al. Seasonal and spatial variation in hydrochemical parameters of Lake Onego (Russia): insights from 2016 field monitoring. Inland Waters. 2019, 9, 2, 227–238. doi:10.1080/20442041.2019.1568097
50. Ryzhakov A., Vapirov V., Stepanova I. Silicon in surface waters of the humid zone (the case of Karelian waterbodies). Proceedings of the Karelian Research Centre of the Russian Academy of Sciences, 2019, 3, 52–60 (in Russian). doi:10.17076/lim942
51. Marshall J., Adcrof A., Hill C., et al. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research: Oceans. 1997, 102(C3), 5753–5766. doi:10.1029/96JC02775
52. Marshall J., Hill C., Perelman L., et al. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research: Oceans. 1997, 102(C3), 5733–5752. doi:10.1029/96JC02776
53. Gaspar P., Grégoris Y., Lefevre J.-M. A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and long-term upper ocean study site. Journal of Geophysical Research. 1990, 95(C9), 16179. doi:10.1029/JC095iC09p16179
54. ERA-Interim is a global atmospheric reanalysis. URL: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim (Accessed: 15.03.2022).
55. Sabylina A. Organic carbon, total phosphorus and total nitrogen inflow to lake Onego with stream runoff, and their removal by Svir river waters in 1965–2008. Proceedings of the Karelian Research Centre of the Russian Academy of Sciences. 2016, 9, 68–77 (in Russian).
56. Stepanauskas R., Jorgensen N.O.G., Eigaard O.R., et al. Summer inputs of riverine nutrients to the Baltic Sea: Bioavailability and eutrophication relevance. Ecological Monographs. 2002, 72, 4, 579–597. doi:10.1890/0012-9615(2002)072[0579:SIORNT]2.0.CO;2
57. Lozovik P.A., Borodulina G.S., Karpechko Y.V., et al. Nutrient load on Lake Onego according to field data. Proceedings of the Karelian Research Centre of the Russian Academy of Sciences. 2016, 5, 35–52 (in Russian). doi:10.17076/lim303
58. Galakhina N., Zobkov M., Zobkova M. Current chemistry of Lake Onego and its spatial and temporal changes for the last three decades with special reference to nutrient concentrations. Environmental Nanotechnology, Monitoring & Management. 2022, 17, 100619. doi:10.1016/j.enmm.2021.100619
59. Pilcher D.J., McKinley G.A., Bootsma H.A., et al. Physical and biogeochemical mechanisms of internal carbon cycling in Lake Michigan. Journal of Geophysical Research: Oceans. 2015, 120, 3, 2112–2128. doi:10.1002/2014JC010594
60. Gloege L., McKinley G.A., Mooney R.J., et al. Lake hydrodynamics intensify the potential impact of watershed pollutants on coastal ecosystem services. Environmental Research Letters IOP Publishing. 2020, 15, 6, 064028. doi:10.1088/1748–9326/ab7f62
61. Bennington V., McKinley G.A., Kimura N., et al. General circulation of Lake Superior: Mean, variability, and trends from 1979 to 2006. Journal of Geophysical Research: Oceans. 2010, 115, C12015. doi:10.1029/2010JC006261
62. Jansen J., MacIntyre S., Barrett D.C., et al. Winter Limnology: How do hydrodynamics and biogeochemistry shape ecosystems under ice? Journal of Geophysical Research: Biogeosciences. 2021, 126, 6, e2020JG006237. doi:10.1029/2020JG006237
63. Tekanova E.V., Syarki M.T. Peculiarities of phenology of the primary production process in the pelagic zone of Lake Onega. Biology Bulletin. 2015, 42, 6, 556–562. doi:10.1134/S1062359015060114
64. Kahru M., Elmgren R., Savchuk O.P. Changing seasonality of the Baltic Sea. Biogeosciences. 2016, 13, 4, 1009–1018. doi:10.5194/bg-13–1009–2016
65. Shiryaeva A.V., Shiryaev M.V., Semenov V.A. Changes in the duration of stable cold and warm seasons at the beginning of the 21st century in Russia. Doklady Earth Sciences. 2018, 481, 1, 934–938. doi:10.1134/S1028334X18070188
66. Efremova T.V., Pal’shin N.I., Belashev B.Z. Water temperature in different types of lakes in Karelia under changing climate based on data of instrumental measurements in 1953–2011. Water Resource. 2016, 43, 2, 402–411. doi:10.1134/S0097807816020020
67. Sterner R.W., Elser J.J. Ecological stoichiometry: The biology of elements from molecules to the biosphere. Princeton University Press, 2002. 464 p.
68. Reynolds C.S. The ecology of phytoplankton. Cambridge, Cambridge University Press, 2006. doi:10.1017/CBO9780511542145
69. Sterner R.W., Andersen T., Elser J.J. et al. Scale-dependent carbon: nitrogen: phosphorus seston stoichiometry in marine and freshwaters. Limnology and Oceanography. 2008, 53, 3, 1169–1180. doi:10.4319/lo.2008.53.3.1169
70. Sterner R. C: N: P stoichiometry in Lake Superior: freshwater sea as end member. Inland Waters. 2011, 1(1), 29–46. doi:10.5268/IW-1.1.365
71. Bergström A.-K., Karlsson J., Karlsson D. et al. Contrasting plankton stoichiometry and nutrient regeneration in northern arctic and boreal lakes. Aquatic Sciences. 2018, 80(2), 24. doi:10.1007/s00027-018-0575-2
72. Menden-Deuer S., Lessard E.J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography. 2000, 45(3), 569–579. doi:10.4319/lo.2000.45.3.0569
73. Raymont J.E.G. Plankton and productivity in the oceans. Volume 2 — Zooplankton. 2nd edition, viii. Pergamon Press, 1983, 824 p.
74. Filatov N.N. (editor). Onego Lake: atlas. Karelian Research Center of the Russian Academy of Sciences, Petrozavodsk, 2010 (in Russian).
75. Dove A., Chapra S.C. Long-term trends of nutrients and trophic response variables for the Great Lakes. Limnology and Oceanography. 2015, 60(2), 696–721. doi:10.1002/lno.10055
76. Alin S.R., Johnson T.C. Carbon cycling in large lakes of the world: A synthesis of production, burial, and lake-atmosphere exchange estimates. Global Biogeochemical Cycles. 2007, 21(3), GB3002. doi:10.1029/2006GB002881
77. Sterner R.W. In situ-measured primary production in Lake Superior. Journal of Great Lakes Research. 2010, 36(1), 139– 149. doi:10.1016/j.jglr.2009.12.007
78. Farley M. Eutrophication in fresh waters: an international review. Encyclopedia of lakes and reservoirs / ed. Bengtsson L., Herschy R.W., Fairbridge R.W. Dordrecht: Springer Netherlands, 2012. P. 258–270. doi:10.1007/978-1-4020-4410-6_79.
79. Fahnenstiel G.L., Sayers M.J., Shuchman R.A., et al. Lake-wide phytoplankton production and abundance in the Upper Great Lakes: 2010–2013. Journal of Great Lakes Research. 2016, 42(3), 619–629. doi:10.1016/j.jglr.2016.02.004
80. Suarez E.L., Tiffay M.-C., Kalinkina N., et al. Diurnal variation in the convection-driven vertical distribution of phytoplankton under ice and after ice-off in large Lake Onego (Russia). Inland Waters. 2019, 9(2), 193–204. doi:10.1080/20442041.2018.1559582
81. Perga M.-E., Syarki M., Spangenberg J.E., et al. Fasting or feeding: A planktonic food web under lake ice. Freshwater Biology. 2021, 66(3), 570–581. doi:10.1111/fwb.13661
82. Groom S., Sathyendranath S., Ban Y., et al. Satellite ocean colour: Current status and future perspective. Frontiers in Marine Science. 2019, 6. doi:10.3389/fmars.2019.00485
83. Kalaroni S., Tsiaras K., Petihakis G., et al. Modelling the Mediterranean pelagic ecosystem using the POSEIDON ecological model. Part I: Nutrients and chlorophyll-a dynamics. Deep Sea Research. 2020, 171, 104647. doi:10.1016/j.dsr2.2019.104647
84. Oveisy A., Rao R., Leon L.F., et al. Three-dimensional winter modeling and the effects of ice cover on hydrodynamics, thermal structure and water quality in Lake Erie. Journal of Great Lakes Research. 2014, 40, 19–28. doi:10.1016/j.jglr.2014.09.008
85. Bouffard D., Kiefer I., Wüest A., et al. Are surface temperature and chlorophyll in a large deep lake related? An analysis based on satellite observations in synergy with hydrodynamic modelling and in-situ data. Remote Sensing of Environment. 2018, 209, 510–523. doi:10.1016/j.rse.2018.02.056
86. Yunev O.A., Carstensen J., Stelmakh L.V. et al. Reconsideration of the phytoplankton seasonality in the open Black Sea. Limnology and Oceanography Letters. 2021, 6(1), 51–59. doi:10.1002/lol2.10178
87. Pozdnyakov D.V., Korosov A.A., Petrova N.A., et al. Multi-year satellite observations of Lake Ladoga’s biogeochemical dynamics in relation to the lake’s trophic status. Journal of Great Lakes Research. 2013, 39, 34–45. doi:10.1016/j.jglr.2013.05.002
88. Pozdnyakov D.V., Filatov N.N. Interannual water quality variations in Lake Ladoga in spring during 2016 and 2017: satellite observations. Fundamental and Applied Hydrophysics. 2021, 14(1), 79–85. doi:10.7868/S2073667321010081
89. Gbagir A.-M.G., Colpaert A. Assessing the trend of the trophic state of Lake Ladoga based on multi-year (1997–2019) CMEMS GlobColour-Merged CHL-OC5 satellite observations. Sensors. 2020, 20(23), 6881. doi:10.3390/s20236881
90. Savchuk O., Wulff F. Biogeochemical transformations of nitrogen and phosphorus in the marine environment — coupling hydrodynamic and biogeochemical processes in models for the Baltic proper. Contribution Systems Ecology Stockholm University, 1996, 79 p.
91. Savchuk O., Wulff F. A model of the biogeochemical cycles of nitrogen and phosphorus in the Baltic. A systems analysis of the Baltic Sea ed. Wulff F.V., Rahm L.A., Larsson P. Berlin. Heidelberg, Springer, 2001, 373–415. doi:10.1007/978-3-662-04453-7_14
92. Carman R., Aigars J., Larsen B. Carbon and nutrient geochemistry of the surface sediments of the Gulf of Riga, Baltic Sea. Marine Geology. 1996, 134(1), 57–76. doi:10.1016/0025-3227(96)00033-3
93. Bunting L., Leavitt P.R., Simpson G.L., et al. Increased variability and sudden ecosystem state change in Lake Winnipeg, Canada, caused by 20th century agriculture. Limnology and Oceanography. 2016, 61(6), 2090–2107. doi:10.1002/lno.10355
94. Nürnberg G.K., LaZerte B.D. More than 20 years of estimated internal phosphorus loading in polymictic, eutrophic Lake Winnipeg, Manitoba. Journal of Great Lakes Research. 2016, 42(1), 18–27. doi:10.1016/j.jglr.2015.11.003
Review
For citations:
Isaev A.V., Savchuk O.P., Filatov N.N. Three-Dimensional Hindcast of Nitrogen and Phosphorus Biogeochemical Dynamics in Lake Onego Ecosystem, 1985–2015. Part I: Long-Term Dynamics and Spatial Distribution. Fundamental and Applied Hydrophysics. 2022;15(2):76-97. https://doi.org/10.59887/fpg/e1m2-63b5-rhvg