Application of the Turbulent Vortex Dynamo Theory for Early Diagnostics of the Tropical Cyclone Genesis
https://doi.org/10.59887/fpg/vaxg-xdmv-11pn
Abstract
The climate change is becoming more and more obvious, which leads to an increase in the number of intense atmospheric vortices (tropical and quasi-tropical cyclones, polar hurricanes, tornadoes) and an expansion of the geographical and seasonal limits of their occurrence. A recent example was the quasi-tropical cyclone in the Black Sea on August 11–16, 2021. Under these conditions, the accurate diagnosis of cyclogenesis is extremely important and, based on it, the forecast of further evolution and the trajectory of the forming vortex. The main source of energy for tropical, quasi-tropical and polar hurricanes is thermal convection caused by significant temperature differences between the atmospheric layer and the underlying water surface. This allows us to propose a unified approach for the diagnosis of cyclogenesis in all three cases.
For the first time, an original approach is proposed for determining the exact time of the onset of tropical cyclogenesis. This approach includes a combined analysis of satellite images of cloudiness and the corresponding data of cloud-resolving numerical modeling for the region of developing vortex disturbance. The theoretical basis is the fundamental hypothesis of a turbulent vortex dynamo. The theory provides quantitative criteria that determine the excitation of large-scale vortex instability in the atmosphere. Atmospheric numerical modeling makes it possible to accurately determine the moment of time at which the necessary conditions for the onset of instability are realized. This moment is interpreted as the beginning of cyclogenesis. The specific configurations of vortical cloud convection found in the work, which correspond to the initial stage of cyclogenesis, can be used in operational meteorological diagnostics when analyzing satellite images of cloudiness. The approach is illustrated by the example of diagnostics of tropical cyclogenesis.
Keywords
About the Author
G. V. LevinaRussian Federation
117997, Profsoyuznaya Str., 84/32, Moscow
References
1. Beven II J.L. Tropical Cyclone Report: Hurricane Pablo. Miami, Florida: National Hurricane Center. 27 January 2020. URL: https://www.nhc.noaa.gov/data/tcr/AL182019_Pablo.pdf (Date of access: 24.04.2022).
2. Emanuel K. 100 years of progress in tropical cyclone research. Meteorological Monographs. 2018, 59, 1, 15.1–15.68.
3. Met Office. Miscellaneous Images. Black Sea Vortices. https://web.archive.org/web/20070109143418/http://www.metoffice.gov.uk/weather/tropicalcyclone/tcimages/Misc/blacksea1.gif (date of access: 24.04.2022).
4. Met Office. Miscellaneous Images. Black Sea Vortices. https://web.archive.org/web/20070109143556/http://www.metoffice.gov.uk/weather/tropicalcyclone/tcimages/Misc/blacksea2.gif (date of access: 24.04.2022).
5. Efimov V.V., Shokurov M.V., Yarovaya D.A. Numerical simulation of a quasi-tropical cyclone over the Black Sea. Izvestiya, Atmospheric and Oceanic Physics. 2007, 43, 6, 667–686. doi:10.1134/S0001433807060011
6. Efimov V.V., Stanichnyi S.V., Shokurov M.V., Yarovaya D.A. Observation of a quasi-tropical cyclone over the Black Sea. Russian Meteorology and Hydrology. 2008, 33, 4, 233–239. doi:10.3103/S1068373908040067
7. Gismeteo. News. 16 August. URL: https://www.gismeteo.ru/news/weather/poltonny-vody-na-kvadratnyj-metr-vtemrjuke-vypala-godovaya-norma-osadkov/?utm_source=gismeteo&utm_medium=rss_feed&utm_campaign=news (date of access: 24.04.2022).
8. Levina G.V. On the path from the turbulent vortex dynamo theory to diagnosis of tropical cyclogenesis. Open Journal of Fluid Dynamics. 2018, 8, 86–114. doi:10.4236/ojfd.2018.81008
9. Levina G.V., Montgomery M.T. A first examination of the helical nature of tropical cyclogenesis. Doklady Earth Sciences. 2010, 434, 1, 1285–1289.
10. Levina G.V., Montgomery M.T. Numerical diagnosis of tropical cyclogenesis based on a hypothesis of helical selforganization of moist convective atmospheric turbulence. Doklady Earth Sciences. 2014, 458, 1, 1143–1148.
11. Levina G.V., Montgomery M.T. When will cyclogenesis commence given a favorable tropical environment? Procedia IUTAM. 2015, 17, 59–68.
12. National Hurricane Center and Central Pacific Hurricane Center NOAA 2022; NHC Aircraft Reconnaissance. URL: https://www.nhc.noaa.gov/recon.php (date of access: 24.04.2022).
13. Levina G.V. Birth of a hurricane: early detection of large-scale vortex instability. Journal of Physics: Conference Series. 2020, 1640, 012023. doi:10.1088/1742–6596/1640/1/012023
14. Levina G.V. How does cyclogenesis commence given a favorable tropical environment? Environmental Science Proceedings. 2021, 8, 1:20. doi:10.3390/ecas2021–10320
15. Moiseev S.S., Sagdeev R.Z., Tur A.V., Khomenko G.A., Yanovsky V.V. Theory of the origin of large-scale structures in hydrodynamic turbulence. Soviet Journal of Experimental and Theoretical Physics. 1983, 58, 1149–1157.
16. Moiseev S.S., Sagdeev R.Z., Tur A.V., Khomenko G.A., Shukurov A.M. Physical mechanism of amplification of vortex disturbances in the atmosphere. Soviet Physics Doklady. 1983, 28, 925–928.
17. Frisch U. Turbulence: The Legacy of A.N. Kolmogorov. Cambridge: Cambridge Univ. Press, 1995. 296 p.
18. Steenbeck M., Krause F., Rädler K.-H. A calculation of the mean electromotive force in an electrically conducting fluid in turbulent motion, under the influence of Coriolis forces. Zeitschrift für Naturforschung. 1966, 21A, 369–376.
19. Frisch U., She Z.S., Sulem P.L. Large-scale flow driven by the anisotropic kinetic alpha effect. Physica D: Nonlinear Phenomena. 1987, 28, 382–392.
20. Rutkevich P.B. Equation for the rotational instability due to convective turbulence and the Coriolis force. Journal of Experimental and Theoretical Physics. 1993, 77, 933–938.
21. Hendricks E.A., Montgomery M.T., Davis C.A. The role of “vortical” hot towers in the formation of tropical cyclone Diana (1984). Journal of the Atmospheric Sciences. 2004, 61, 1209–1232.
22. Reasor P.D., Montgomery M.T., Bosart L.F. Mesoscale observations of the genesis of Hurricane Dolly (1996). Journal of the Atmospheric Sciences. 2005, 62, 3151–3171. doi:10.1175/JAS3540.1
23. Montgomery M.T., Nicholls M.E., Cram T.A., Saunders A.B. A vortical hot tower route to tropical cyclogenesis. Journal of the Atmospheric Sciences. 2006, 63, 355–386. doi:10.1175/JAS3604.1
24. Wikipedia 2021 The Free Encyclopedia. URL: https://en.wikipedia.org/wiki/Hot_tower (date of access: 24.04.2022).
25. Riehl H., Malkus J.S. On the heat balance in the equatorial trough zone. Geophysica. 1958, 6, 503–538.
26. Houze R.A. Jr., Lee W.C., Bell M.M. Convective contribution to the genesis of Hurricane Ophelia (2005). Monthly Weather Review. 2009, 137, 2778–2800. doi:10.1175/2009MWR2727.1
27. Dunkerton T.J., Montgomery M.T., Wang Z. Tropical cyclogenesis in a tropical wave critical layer: easterly waves. Atmospheric Chemistry and Physics. 2009, 9, 5587–5646.
28. Molinari J., Vollaro D. Distribution of helicity, CAPE, and shear in tropical cyclones. Journal of the Atmospheric Sciences. 2010, 67, 274–284. doi:10.1175/2009JAS3090.1
29. Houze R.A. Jr. Clouds in tropical cyclones. Monthly Weather Review. 2010, 138, 293–344. doi:10.1175/2009MWR2989.1
30. Montgomery M.T. et al. The pre-depression investigation of cloud systems in the tropics (PREDICT) experiment: scientific basis, new analysis tools, and some first results. Bulletin of the American Meteorological Society. 2012, 93, 153–172. doi:10.1175/BAMS-D-11-00046.1
31. Moffatt H.-K. The degree of knottedness of tangled vortex lines. Journal of Fluid Mechanics. 1969, 35, 117–129.
32. Moffatt H.-K. Helicity and singular structures in fluid dynamics. Proceedings of the National Academy of Sciences. USA. 2014, 111, 3663–3670. doi:10.1073/pnas.1400277111
33. National Hurricane Center and Central Pacific Hurricane Center NOAA 2022. URL: https://www.nhc.noaa.gov/data/tcr/index.php?season=2021&basin=atl (date of access: 24.04.2022).
34. Rotunno R. On the evolution of thunderstorm rotation. Monthly Weather Review. 1981, 109, 577–586. doi:10.1175/1520–0493(1981)109<0577:OTEOTR>2.0.CO;2
35. Levina G.V. Parameterization of helical turbulence in numerical models of intense atmospheric vortices. Doklady Earth Sciences. 2006, 411A, 1417–1421.
36. Levina G.V., Burylov I.A. Numerical simulation of helical-vortex effects in Rayleigh-Bénard convection. Nonlinear Processes in Geophysics. 2006, 13, 205–222. doi:10.5194/npg-13–205–2006
37. Emanuel K. Tropical cyclones. Annual Review of Earth and Planetary Sciences. 2003, 31, 75–104. doi:10.1146/annurev.earth.31.100901.141259
38. Montgomery M.T., Smith R.K. Paradigms for tropical cyclone intensification. Australian Meteorological and Oceanographic Journal. 2014, 64, 37–66. doi:10.22499/2.6401.005
39. National Hurricane Center and Central Pacific Hurricane Center NOAA 2022. URL: https://www.nhc.noaa.gov/data/tcr/index.php?season=2020&basin=atl (date of access: 24.04.2022).
40. Yarovaya D.A., Levina G.V. Study of vortical convection of the quasi-tropical cyclone over the Black Sea by cloudresolving numerical modeling. Abstracts of All-Russian conference: “Climate change: causes, risks, consequences, problems of adaptation and management”. November 26–28, Moscow, Russia. Moscow, Fizmatkniga, 2019. 132 p. (in Russian).
41.
Review
For citations:
Levina G.V. Application of the Turbulent Vortex Dynamo Theory for Early Diagnostics of the Tropical Cyclone Genesis. Fundamental and Applied Hydrophysics. 2022;15(2):47-59. https://doi.org/10.59887/fpg/vaxg-xdmv-11pn