Preview

Fundamental and Applied Hydrophysics

Advanced search

The Influence of Numerical Method and Grid Parameters on the Simulation Accuracy of Damped Oscillations of Free Floating Cylinder

https://doi.org/10.59887/fpg/kx4r-pr4d-fba8

Abstract

The paper concentrates on the influence of grid parameters, the time step size, and the order of temporal and spatial approximation on the solution accuracy of the floating body problem. Damped free oscillations of the cylinder on the water surface is under consideration. The numerical simulation method of the floating bodies is based on the solution of a system of Navier-Stokes equations together with a VOF (Volume of Fluid) method. The Navier-Stokes equations are discretized using finite volume method (FVM), and solved by SIMPLE method. The motion of the body is ensured by the deformation of the computational grid. A CSF (Continuum Surface Force) model is used to account for the surface tension forces. The method is implemented in LOGOS software package. The research has shown that implementation of the second-order scheme for temporal and spatial discretization leads to a more accurate result. The relaxation factor of body surface force has no affects on the solution accuracy.

About the Authors

K. S. Plygunova
Russian Federal Nuclear Center — The All-Russian Research Institute of Experimental Physics
Russian Federation

607188, pr. Mira, 37, Sarov, Nizhny Novgorod Region



A. S. Kozelkov
Russian Federal Nuclear Center — The All-Russian Research Institute of Experimental Physics; Nizhny Novgorod State Technical University n. a. R.E. Alekseev
Russian Federation

607188, pr. Mira, 37, Sarov, Nizhny Novgorod Region

603950, Minin Str., 24, Nizhny Novgorod



D. Y. Strelets
Moscow Aviation Institute
Russian Federation

125993, Volokolamskoe Shosse, 4, Moscow



D. A. Utkin
Russian Federal Nuclear Center — The All-Russian Research Institute of Experimental Physics
Russian Federation

607188, pr. Mira, 37, Sarov, Nizhny Novgorod Region



V. V. Kurulin
Russian Federal Nuclear Center — The All-Russian Research Institute of Experimental Physics
Russian Federation

607188, pr. Mira, 37, Sarov, Nizhny Novgorod Region



References

1. Rajesh Kannah T., Natarajan R. Experimental study on the hydrodynamics of a floating, production, storage and offloading system. Journal of Waterway, Port, Coastal, Ocean Engineering. 2006, 132, 66–70. doi:10.1061/(ASCE)0733-950X(2006)132:1(66)

2. Cruz J. Ocean Wave Energy. Springer Series in Green Energy and Technology, UK, 2008.

3. Kholodilin A.N., Shmyrev A.N. Ship seaworthiness and regulation in sea-wave. Leningrag, Sudostroeniye, 1976. 328 p. (in Russian).

4. Taranov A.E. Determination of local and integral parameters for container cargo carrier in digital basin. Transactions of the Krylov State Research Centre. 2019, 3(389), 73–82 (in Russian). doi:10.24937/2542-2324-2019-3-389-73-82

5. Turbal V.K., Shpakov V.S., Shtumpf V.M. Design of naval shipping lines and propulsion devices. Leningrag, Sudostroeniye, 1983. 304 p. (in Russian).

6. Khramushin V.N. Explorary research of ship wild seaworthiness. Vladivostok, Dalnauka, 2003, 172 p. (in Russian).

7. Kawamura K., Hashimoto H., Matsuda A., Terada D. SPH simulation of ship behavior in severe water-shipping situations. Ocean Engineering. 2016, 120, 220–229. doi:10.1016/j.oceaneng.2016.04.026

8. Kozelkov A.S., Pogosyan M.A., Strelets D.Y., Tarasova N.V. Application of mathematical modeling to solve the emergency water landing task in the interests of passenger aircraft certification. Aerospace Systems. 2021, 4, 75–89. doi:10.1007/s42401-020-00082-7

9. Harlow F., Welch J., et al. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids. 1965, 8, 2182–2189. doi:10.1063/1.1761178

10. Unverdi S., Tryggvason G. A front-tracking method for viscous, incompressible, multi-fluid flows. Journal of Computational Physics. 1992, 100, 25–37. doi:10.1016/0021-9991(92)90307-K

11. Sussman M., Smereka P., Osher S. A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics. 1994, 114, 146–159. doi:10.1006/jcph.1994.1155

12. Anderson D., McFadden G., Wheeler A. Diffuse-interface methods in fluid mechanics. Annual Review of Fluid Mechanics. 1998, 30, 139–165. doi:10.1146/annurev.fluid.30.1.139

13. Hirt C.W., Nichols B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics. 1981, 39, 201–225. doi:10.1016/0021-9991(81)90145-5

14. Ubbink O. Numerical prediction of two fluid systems with sharp interfaces: PhD thesis. Imperial College, University of London, 1997.

15. Palm J., Eskilsson C., Moura Paredes G., Bergdahl L. Coupled mooring analysis for floating wave energy converters using CFD: Formulation and validation. International Journal of Marine Energy. 2016, 16, 83–99. doi:10.1016/J.IJOME.2016.05.003

16. Yu Y.H., Li Y. Reynolds-Averaged Navier-Stokes simulation of the heave performance of a two-body floating-point absorber wave energy system. Computers & Fluids. 2013, 73, 104–114. doi:10.1016/j.compfluid.2012.10.007

17. Luke E., Collins E., Blades E. A fast mesh deformation method using explicit interpolation. Journal of Computational Physics. 2012, 231, 586–601. doi:10.1016/j.jcp.2011.09.021

18. Benek J.A., Buning P.G., Steger J.L. A 3-D Chimera Grid Embedding Technique. American Institute of Aeronautics and Astronautics Paper. 1985, 85, 15–23.

19. Benek J.A., Donegan T.L., Suhs N.E. Extended Chimera grid embedding scheme with application to viscous flow. American Institute of Aeronautics and Astronautics Paper. 1987, 87, 11–26.

20. Chan W.M. Overset grid technology development at NASA ames research center. Computers & Fluids. 2009, 3(38), 496– 503. doi:10.1016/j.compfluid.2008.06.009

21. Ma Z.H., Qian L., Martínez-Ferrer P.J. et al. An overset mesh based multiphase flow solver for water entry problems. Computers & Fluids. 2018, 172, 689–705.

22. Mittal R., Iaccarino G. Immersed boundary methods. Annual Review of Fluid Mechanics. 2005, 37, 239–261. doi:10.1146/annurev.fluid.37.061903.175743

23. Pinelli A., Naqavi I.Z., Piomelli U., Favier J. Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers. Journal of Computational Physics. 2010, 229, 9073–9091. doi:10.1016/j.jcp.2010.08.021

24. Bihs H., Kamath A. A combined level set/ghost cell immersed boundary representation for floating body simulations. International Journal for Numerical Methods in Fluids. 2017, 83(12), 905–916.

25. Chena H., Qiana L., Maa Z., et al. Application of an overset mesh based numerical wave tank for modelling realistic free-surface hydrodynamic problems. Ocean Engineering. 2019, 176, 97–117. doi:10.1016/j.oceaneng.2019.02.001

26. Kristiansen D. Wave induced effects on floaters of aquaculture plants: PhD thesis. Norwegian University of Science and Technology, 2010.

27. Zhao X., Hu C. Numerical and experimental study on a 2-D floating body under extreme wave conditions. Applied Ocean Research. 2012, 35, 1–13. doi:10.1016/j.apor.2012.01.001

28. Domínguez J., Crespo A., Hall M., et al. SPH simulation of floating structures with moorings. Coastal Engineering. 2019, 153, 35–60.

29. Castro A.M., Carrica P.M., Stern F. Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS. Computers & Fluids. 2011, 51, 35–47. doi:10.1016/j.compfluid.2011.07.005

30. Maskell S.J., Ursell F. The transient motion of a floating body. Journal of Fluid Mechanics. 1970, 44, 303–313. doi:10.1017/S0022112070001842

31. Soichi I. Study of the transient heave oscillation of a floating cylinder. Massachusetts Institute of Technology, 1977.

32. Lashkin S.V., Kozelkov A.S., Yalozo A.V., Gerasimov V.Y., Zelensky D.K. Efficiency analysis of the parallel implementation of the SIMPLE algorithm on multiprocessor computers. Journal of Applied Mechanics and Technical Physics. 2017, 58 (7), 1242–1259. doi:10.1134/S0021894417070069

33. Kozelkov A.S., Krutyakova O.L., Kurulin V.V., Tyatyushkina E.S., Kurkin A.A. Zonal RANS–LES approach based on an algebraic Reynolds stress model. Fluid Dynamics. 2015, 50 (5), 24–33. doi:10.1134/S0015462815050038

34. Kozelkov A.S., Kurkin A.A., Pelinovskii E.N., Kurulin V.V., Tyatyushkina E.S. Modeling the disturbances in the lake Chebarkul caused by the fall of the meteorite in 2013. Fluid Dynamics. 2015, 50 (6), 828–840. doi:10.1134/S0015462815060137

35. Loytsyanskiy L.G. Fluid and gas mechanics. Moscow, State Publishing House of Technical and Theoretical Literature, 1950. 678 p.

36. Kozelkov A.S., Kurulin V.V., Lashkin S.V., Shagaliev R.M., Yalozo A.V. Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications. Computational Mathematics and Mathematical Physics. 2016, 56 (8), 1506–1516. doi:10.1134/S0965542516080091

37. Fletcher C. Computational techniques for fluid dynamics in two books. Moscow, Mir, 1991, 1058 p.

38. Jasak H. Error analysis and estimation for the finite volume method with applications to fluid flows. Thesis submitted for the degree of doctor. Department of Mechanical Engineering, Imperial College of Science, 1996.

39. Ferziger J.H., Peric M. Computational methods for fluid dynamics. Berlin, Heidelberg: Springer, 2002. 423 p.

40. Efremov V.R., Kozelkov A.S., Kornev A.V., et al. Method for taking into account gravity in free-surface flow simulation. Computational Mathematics and Mathematical Physics. 2017, 57 (10), 1720–1733. doi:10.1134/S0965542517100086

41. Kozelkov A.S. The numerical technique for the landslide tsunami simulations based on Navier–Stokes equations. Journal of Applied Mechanics and Technical Physics. 2017, 58, 7, 1192–1210. doi:10.1134/S0021894417070057

42. Betelin V.B., Shagaliev R.M., et al. Mathematical simulation of hydrogen–oxygen combustion in rocket engines using LOGOS code. Acta Astronautica. 2014, 96, 1, 53–64. doi:10.1016/j.actaastro.2013.11.008

43. Brackbill J.U., Kothe D.B., Zemach C. A continuum method for modeling surface tension. Journal of Computational Physics. 1992, 100, 335–354. doi:10.1016/0021-9991(92)90240-Y


Review

For citations:


Plygunova K.S., Kozelkov A.S., Strelets D.Y., Utkin D.A., Kurulin V.V. The Influence of Numerical Method and Grid Parameters on the Simulation Accuracy of Damped Oscillations of Free Floating Cylinder. Fundamental and Applied Hydrophysics. 2022;15(2):33-46. (In Russ.) https://doi.org/10.59887/fpg/kx4r-pr4d-fba8

Views: 220


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)