Different approaches to numerical modeling of sea waves
https://doi.org/10.59887/fpg/u1df-m1x7-1bxg
Abstract
The main approaches in direct modeling of surface waves based on complete equations of dynamics of the inviscid liquid with a free surface are briefly considered. Most of the models are intended for study of the applied and engineering problems. It is assumed that the main model is written in the curvilinear coordinate system where the height is counted off from wave surface. In the two-dimensional periodic formulation, when using a conformal system, the problem is reduced to the system of one-dimensional equations that can be easily solved using Fourier-transform method. For three-dimensional waves such simplifications do not exist, thus, the vertical velocity on the surface is calculated by solving a three-dimensional Poisson equation or using a surface integral method. An approximate scheme based on the two-dimensional equations is considered. The scheme allows reproducing the statistical mode of waves with high accuracy consistent with the similar results obtained from the accurate three-dimensional model.
About the Author
D. V. ChalikovAustralia
117997, Nahimovskiy prospekt, 36, Moscow; Victoria 3010
References
1. Dysthe K.B. Note on a modification to the nonlinear Schrӧdinger equation for application to deep water waves. Proc. R. Soc. Lond. 1979, A 369, 105–114.
2. Chalikov D., Sheinin D. Direct modeling of one-dimensional nonlinear potential waves. Nonlinear ocean waves. Advances in Fluid Mechanics (Perrie W. (ed)). 1998, 17, 207–258.
3. Engsig-Karup A.P., Harry B., Bingham H.B., Lindberg O. An efficient flexible-order model for 3D nonlinear water waves. J. Comput. Physics. 2009, 228(6), 2100–2118. doi: 10.1016/j.jcp.2008.11.028
4. Engsig-Karup A., Madsen M., Glimberg S. A massively parallel GPU‐accelerated mode for analysis of fully nonlinear free surface waves. International Journal for Numerical Methods in Fluids. 2012, 2675. doi: 10.1002/fld.2675
5. Causon D.M., Mingham C.G., Qian L. Developments in multi-fluid finite volume free surface capturing methods. Advances in Numerical Simulation of Nonlinear Water Waves. 2010, 397–427. doi: 10.1142/9789812836502_0011
6. Ma Q.W., Yan S. Qale-FEM method and its application to the simulation of free responses of floating bodies and overturning waves. Advances in Numerical Simulation of Nonlinear Water Waves. 2010, 165–202. doi: 10.1142/9789812836502_0005
7. Greaves D. Application of the finite volume method to the simulation of nonlinear water waves. Advances in Numerical Simulation of Nonlinear Water Waves. 2010, 357–396. doi: 10.1142/9789812836502_0010
8. Grue J., Fructus D. Model for fully nonlinear ocean wave simulations derived using fourier inversion of integral equations in 3D. Advances in Numerical Simulation of Nonlinear Water Waves. 2010, 1–42. doi: 10.1142/9789812836502_0001
9. Ducrozet G., Bonnefoy F., Le Touzé D., Ferrant P. 3-D HOS simulations of extreme waves in open seas. Nat. Hazards Earth Syst. Sci. 2007, 7, 109–122. doi: 10.5194/nhess-7-109-2007
10. Ducrozet G., Bingham H.B., Engsig-Karup A.P., Bonnefoy F., Ferrant P. A comparative study of two fast nonlinear freesurface water wave models. Int. J. Numer. Meth. Fluids. 2012, 69, 1818–1834.
11. Ducrozet G., Bonnefoy F., Le Touzé D., Ferrant P. HOS-ocean: Open-source solver for nonlinear waves in open ocean based on High-Order Spectral method. Comp. Phys. Comm. 2016, 203, 245–254. doi: 10.1016/j.cpc.2016.02.017
12. Touboul J., Kharif C. Two-dimensional direct numerical simulations of the dynamics of rogue waves under wind action. Advances in Numerical Simulation of Nonlinear Water Waves. 2010, 43–74. doi: 10.1142/9789812836502_0002
13. Dalrymple R.A., Gómez-Gesteira M., Rogers B.D., Panizzo A., Zou S., Crespo A.J., Cuomo G., Narayanaswamy M. Smoothed particle hydrodynamics for water waves. Advances in Numerical Simulation of Nonlinear Water Waves. 2010, 465–495.
14. Issa R, Violeau D, Lee E.-S., Flament H. Modelling nonlinear water waves with RANS and LES SPH models. Advances in Numerical Simulation of Nonlinear Water Waves. 2010, 497–537. doi: 10.1142/9789812836502_0014
15. Lubin P., Caltagirone J.-P. Large eddy simulation of the hydrodynamics generated by breaking waves. Advances in Numerical Simulation of Nonlinear Water Waves. 2010, 575–604. doi: 10.1142/9789812836502_0016
16. Kim K.S., Kim M.H., Park J.C. Development of MPS (Moving Particle Simulation) method for Multi-liquid-layer Sloshing. Journal of Mathematical Problems in Engineering. 2014, 2014, Article ID350165, 13 p. doi: 10.1155/2014/350165
17. Zhao X., Liu B.-J., Liang S.-X., Sun Z.-C. Constrained interpolation profile (CIP) method and its application. Chuan Bo Li Xue/Journal of Ship Mechanics. 2016, 20(4), 393–402. doi: 10.3969/j.issn.1007-7294.2016.04.002
18. Young D.-L., Wu N.-J., Tsay T.-K. Method of fundamental solutions for fully nonlinear water waves. Advances in Numerical Simulation of Nonlinear Water Waves. 2010, 325–355. doi: 10.1142/9789812836502_0009
19. Ma Q.W., Yan S. Qale-FEM method and its application to the simulation of free responses of floating bodies and overturning waves. Advances in Numerical Simulation of Nonlinear Water Waves. 2010, 165–202.
20. Harlow F.H., Welch E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids. 1965, 8, 2182–2189. doi: 10.1063/1.1761178
21. Noh W.F., Woodward P. SLIC (simple line interface calculation). Lecture Notes in Physics. Springer-Verlag, New York, 1967, 59, 330–340.
22. Hirt C.W., Nichols B.D. Volume of fluid method for the dynamics of free surface. J. Comput. Phys. 1981, 39, 201–225.
23. Prosperetti A., Jacobs J.W. A numerical method for potential flow with free surface. J. Comput. Phys. 1983, 51, 365–386.
24. Miyata H. Finite-difference simulation of breaking waves. J. Comput. Phys. 1986, 5, 179–214.
25. Longuet-Higgins M.S., Cokelet E.D. The deformation of steep surface waves on water. I. A numerical method of computation. Proc. R. Soc. Lond. 1976, 350, 1–26.
26. Chalikov D.V. Numerical simulation of wind-wave interaction. Journal of Fluid Mechanics. 1978, 87, 561–582.
27. Dommermuth D.G. The laminar interactions of a pair of vortex tubes with a free surface. Journal of Fluid Mechanics. 1993, 246, 91–115. doi: 10.1017/S0022112093000059
28. Thompson J.F., Warsi Z.U., Mastin C.W. Boundary-fitted coordinate systems for numerical solution of partial differential equations. A review. J. Comput. Phys. 1982, 47, 1–108. doi: 10.1016/0021-9991(82)90066-3
29. Fritts M.J., Meinhold M.J., von Kerczek C.H. The calculation of nonlinear bow waves. Proceedings of the 17th Symposium on Naval Hydrodynamics, The Hague, Netherlands, 1988, 485–497.
30. Fenton J., Rienecker M. A Fourier method for solving nonlinear water-wave problems: application to solitary-wave interactions. Journal of Fluid Mechanics. 1982, 118, 411–443. doi: 10.1017/S0022112082001141
31. Whitney J.C. The numerical solution of unsteady free-surface flows by conformal mapping. Proc. Second Inter. Conf. on Numer. Fluid Dynamics (ed. M. Holt), Springer-Verlag, 1971, 458–462.
32. Ovsyannikov L.V. Dynamics of liquid continuum. Inst. of Fluid Mechanics. Siberian Branch of Russian Academy of Science. 15, 104–125, 1973.
33. Kano T., Nishida T. Sur le ondes de surface de l’eau avec une justification mathematique des equations des ondes en eau peu profonde. J. Math. Kyoto Univ. (JMKYAZ). 1979, 19–2, 335–370. doi: 10.1215/KJM/1250522437
34. Fornberg B. A numerical method for conformal mapping. SIAM. J. Sci. Comput. 1980, 1, 386–400. doi: 10.1137/0905055
35. Tanveer S. Singularities in water waves and Rayleigh-Taylor instability. Proc. R. Soc. Lond. 1991, A435, 137–158.
36. Tanveer S. Singularities in the classical Rayleigh-Taylor flow: formation and subsequent motion. Proc. R. Soc. Lond. 1993, A441, 501–525.
37. Chalikov D., Sheinin D. Numerical simulation of surface waves based on equations of potential wave dynamics. Proc. ONR, Ocean Waves Workshop. 1994, Tucson, Arizona, 1994.
38. Chalikov D., Sheinin D. The Numerical Investigation of Wavenumber-Frequency Spectrum for 1-D Nonlinear Waves. WMO/ISCU, CAS/JSC Working Group on Numerical Experimentation, Report #19. WMO/TD-No.592, 1994.
39. Chalikov D., Sheinin D. Numerical investigation of wavenumber-frequency spectrum for 1-D nonlinear waves. Ocean Sciences Meeting, Feb.21–25, San-Diego, CA. Abstract in: EOS, transactions (supplement), AGU, 75, #3, 100, 1994.
40. Chalikov D., Sheinin D. Numerical modeling of surface waves based on principal equations of potential wave dynamics. Technical Note. NOAA/NCEP/OMB, 1996. 54 p.
41. Chalikov D., Sheinin D. Direct modeling of one-dimensional nonlinear potential waves. Nonlinear Ocean Waves, ed. W. Perrie, Advances in Fluid Mechanics. 1998, 17, 207–258.
42. Sheinin D., Chalikov D. Hydrodynamical modeling of potential surface waves. Problems of hydrometeorology and environment on the eve of XXI century. Proceedings of international theoretical conference, St. Petersburg, June 24–25, 1999. St.-Petersburg, Hydrometeoizdat, 305–337, 2001.
43. Zakharov V.E., Dyachenko A.I., Vasilyev O.A. New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface. European Journal of Mechanics, B/Fluids. 2002, 21, 283–291.
44. Zakharov V.E., Dyachenko A.I., Prokofiev A.O. Freak waves as nonlinear stage of Stokes wave modulation instability. European Journal of Mechanics, B/Fluids. 2006, 25, 677–692. doi: 10.1016/j.euromechflu.2006.03.004
45. Dold J.W. An efficient surface-integral algorithm applied to unsteady gravity waves. Journal of Comp. Phys. 1992, 103, 90–115. doi: 10.1016/0021-9991(92)90327-U
46. Crapper G.D. Introduction to water waves. Wiley, Chichester, 1984. 224 p.
47. Yuen H.C., Lake B.M. Nonlinear dynamics of deep-water gravity waves. Adv. in Appl. Mech. 1982, 22, 67–229. doi: 10.1016/S0065–2156(08)70066–8
48. Chalikov D., Sheinin D. Modeling of Extreme Waves Based on Equations of Potential Flow with a Free Surface. J. Comp. Phys. 2005, 210, 247–273. doi: 10.1016/j.jcp.2005.04.008
49. Chalikov D. Statistical properties of nonlinear one-dimensional wave fields. Nonlinear Processes in Geophysics. 2005, 12, 1–19.
50. Agnon Y., Babanin A.V., Young I.R., Chalikov D. Fine scale inhomogeneity of wind-wave energy input, skewness, and asymmetry. Geophys. Res. Lett. 2005, 32. doi: 10.1029/2005GL022701
51. Chalikov D. Numerical simulation of Benjamin-Feir instability and its consequences. Physics of Fluid. 2007, 19, 016602-15. doi: 10.1063/1.2432303
52. Chalikov D.V. Statistics of Extreme Wind Waves. Fundamental and Applied Hydrophysics. 2009, 3(5), 4–24.
53. Chalikov D. Freak waves: their occurrence and probability. Physics of Fluids. 2009, 21, 076602. doi: 10.1063/1.3175713
54. Babanin A.V., Chalikov D., Young I.R., Saveliev I. 2010 Numerical and laboratory investigation of breaking of steep twodimensional waves in deep water. Journal of Fluid Mechanics. 2010, 644, 433–463. doi: 10.1017/S002211200999245X
55. Galchenko A., Alexander V. Babanin, Dmitry Chalikov, I.R. Young. Modulational instabilities and breaking strength for deep-water wave groups. J. Phys. Oceanogr. 2010, 40, 10, 2313–2324. doi: 10.1175/2010JPO4405.1
56. Chalikov D., Babanin A.V. Simulation of wave breaking in one-dimensional spectral environment. Journal Phys. Ocean. 2012, 42, 11, 1745–1761. doi: 10.1175/JPO-D-11-0128.1
57. Chalikov D. Numerical modeling of sea waves (eBook). Springer, 2016. 330 p. doi: 10.1007/978-3-319-32916-1
58. Beale J.T. A convergent boundary integral method for three-dimensional water waves. Math. Comput. 2001, 70, 977–1029.
59. Xue M., Xu H., Liu Y., Yue D.K.P. Computations of fully nonlinear three-dimensional wave and wave–body interactions. I. Dynamics of steep three-dimensional waves. Journal of Fluid Mechanics. 2001, 438, 11–39. doi: 10.1017/S0022112001004396
60. Grilli S., Guyenne P., Dias F. A fully nonlinear model for three-dimensional overturning waves over arbitrary bottom. Int. J. Num. Methods Fluids. 2001, 35, 829–867. doi: 10.1002/1097-0363(20010415)35:7<829::AID-FLD115>3.0.CO;2-2
61. Clamond D., Grue J. A fast method for fully nonlinear water wave dynamics. Journal of Fluid Mechanics. 2001, 447, 337–355. doi: 10.1017/S0022112001006000
62. Clamond D., Fructus D., Grue J., Krisitiansen O. An efficient method for three-dimensional surface wave simulations. Part II: Generation and absorption. J. Comput. Physics. 2005, 205, 686–705. doi. 10.1016/j.jcp.2004.11.038
63. Fructus D., Clamond D., Grue J, Kristiansen Ǿ. An efficient model for three-dimensional surface wave simulations. Part I: Free space problems. J. Comput. Phys. 2005, 205, 665–685. doi: 10.1016/j.jcp.2004.11.027
64. Guyenne P., Grilli S.T. Numerical study of three-dimensional overturning waves in shallow water. J. Fluid Mech. 2006, 547, 361–388. doi: 10.1017/S0022112005007317
65. Fochesato C., Dias F., Grilli S. Wave energy focusing in a three-dimensional numerical wave tank. Proc. R. Soc. A. 2006, 462, 2715–2735.
66. Craig W., Sulem C. Numerical simulation of gravity waves. J. Comput. Phys. 1993, 108, 73–83. doi: 10.1006/jcph.1993.1164
67. Zakharov V.E. Stability of periodic waves of finite amplitude on the surface of deep fluid. J. Appl. Mech. Tech. Phys. JETF. 1968, 2, 190–194.
68. Grue J., Fructus D. Model for fully nonlinear ocean wave simulations derived using fourier inversion of integral equations in 3D. Advances in Numerical Simulation of Nonlinear Water Waves. 2010, 1–42. doi: org/10.1142/9789812836502_0001
69. Liu Y., Gou Y., Teng. B., Yoshida S. An extremely efficient boundary element method for wave interaction with long cylindrical structures based on free-surface green’s function. Computation. 2016, 4(3), 36. doi: 10.3390/computation4030036
70. Zheng Y.H., Shen Y.M., Ng C.O. Effective boundary element method for the interaction of oblique waves with long prismatic structures in water of finite depth. Ocean Engineering. 2008, 35, 5—6, 494—502. doi: 10.1016/J.OCEANENG.2007.12.003
71. Dommermuth D., Yue D. A high-order spectral method for the study of nonlinear gravity Waves. Journal of Fluid Mechanics. 1987, 184, 267–288. doi: 10.1017/S002211208700288X
72. West B., Brueckner K., Janda R., Milder M., Milton R. A new numerical method for surface hydrodynamics. Journal of Geophysical Research. 1987, 92, 11 803–11 824. doi: 10.1029/JC092IC11P11803
73. Tanaka M. Verification of Hasselmann’s energy transfer among surface gravity waves by direct numerical simulations of primitive equations. Journal of Fluid Mechanics. 2001, 444, 199–221. doi: 10.1017/S0022112001005389
74. Toffoli A., Onorato M., Bitner-Gregersen E., Monbaliu J. Development of a bimodal structure in ocean wave spectra. Journal of Geophysical Research. 2010, 115, C3, C03006. doi: 10.1029/2009JC005495
75. Touboul J., Kharif C. Two-dimensional direct numerical simulations of the dynamics of rogue waves under wind action. Advances in Numerical Simulation of Nonlinear Water Waves. 2010, 43–74. doi: 10.1142/9789812836502_0002
76. Ducrozet G., Bonnefoy F., Le Touzé D., Ferrant P. 3-D HOS simulations of extreme waves in open seas. Nat. Hazards Earth Syst. Sci. 2007, 7, 109–122. doi: 10.5194/nhess-7-109-2007
77. Ducrozet G., Bingham H.B., Engsig-Karup A.P., Bonnefoy F., Ferrant P. A comparative study of two fast nonlinear freesurface water wave models. Int. J. Numer. Meth. Fluids. 2012, 1818–1834. doi: 10.1002/fld.2672
78. Chalikov D., Babanin A.V., Sanina E. Numerical modeling of three-dimensional fully nonlinear potential periodic waves. Ocean Dynamics. 2014, 64, 10, 1469–1486. doi: 10.1007/s10236-014-0755-0
79. Chalikov D. High-resolution numerical simulation of surface wave development under the action of wind. Geophysics and Ocean Waves Studies / eds. K.S. Essa et al. IntechOpen, London, 2020. doi: 10.5772/intechopen.92262
80. Chalikov D. Accelerated reproduction of 2-D periodic waves. Ocean Dynamics. 2021, 71(4). doi: 10.1007/s10236-021-01450-3
81. Chalikov. D. A two-dimensional approach to the three-dimensional phase resolving wave modeling. Examines Mar. Biol. Oceanogr. 2021, 4(1), EIMBO.000576. doi: 10.31031/EIMBO.2021.04.000576
82. Chalikov D.A. 2D Model for 3D Periodic Deep-WaterWaves. J. Mar. Sci. Eng. 2022. Vol. 10, 410. doi: 10.3390/jmse10030410
83. Tolman H., Chalikov D. On the source terms in a third-generation wind wave model. J. Phys. Oceanogr. 1996, 11, 2497–2518.
84. Chalikov D., Babanin A.V. Parameterization of wave boundary layer. Atmosphere. 2019. 10(11), 686. doi: 10.3390/atmos10110686
85. Chalikov D., Rainchik S. Coupled Numerical Modelling of Wind and Waves and the Theory of the Wave Boundary Layer. Boundary-Layer Meteorol. 2011, 138, 1–141. doi: 10.1007/s10546-010-9543-7
86. Babanin A.V. Breaking and dissipation of ocean surface waves. Cambridge University Press, 2011. 463 p.
87. Babanin A., Chalikov D. Numerical investigation of turbulence generation in non-Breaking potential waves. Journal of Geophysical Research. 2012, 117, C00J17. doi: 10.1029/2012JC007929
Review
For citations:
Chalikov D.V. Different approaches to numerical modeling of sea waves. Fundamental and Applied Hydrophysics. 2022;15(1):19-32. https://doi.org/10.59887/fpg/u1df-m1x7-1bxg