XXI-st century: a shift of paradigm in the planetary boundary layer theory
https://doi.org/10.59887/fpg/ep89-n4z5-g6b6
Abstract
At the beginning of 21st century, Sergej Sergeevich Zilitinkevich initiated a shift of the fundamental paradigm in the planetary boundary layer theory, and wider, in statistical hydromechanics of stratified flows. He held the position of the chair in meteorology at Uppsala University, Sweden in 1998–2003, where he and his colleagues consistently introduced a concept of turbulent potential and total energy and not least reviewed fundamental understanding of turbulent mixing in stratified flows. Zilitinkevich continued as a professor-emeritus at University of Helsinki, Finland, in 2004–2021, where he attracted prestigious mega-grants both in Russia and European Union. As such, he created and led a virtual international research institute — the third institute in course of his carrier in science — for development of theoretical foundations and practical implications of the new paradigm for turbulent energies. A network of researchers and practitioners established by Zilitinkevich continue their joint research in the Pan-Eurasian Experiment frameworks.
About the Author
I. N. EsauNorway
Faculty of Science and Technology.
PO Box 6050 Langnes, N-9037 Tromsø
References
1. Кун Т. Структура научных революций. М.: Изд. АСТ, 2003. 605 с.
2. Зилитинкевич С.С. Самоорганизация и нелокальная природа геофизической турбулентности и планетарных пограничных слоев // Геофизический журнал. 2010. Т. 32. С. 169–174.
3. Zilitinkevich S., Kadantsev E., Repina I., Mortikov E., Glazunov A. Order out of chaos: Shifting paradigm of convective turbulence // J. Atmos. Sci. 2021. P. 3925–3932. doi: 10.1175/jas-d-21-0013.1
4. Broad C.D. The mind and its place in nature. London: Routledge & Kegan Paul, 1925. 256 с.
5. Пригожин И. Философия нестабильности // Вопросы философии. 1991. Т. 6. С. 46–57.
6. Монин А.С., Яглом А.М. Статистическая гидромеханика. М.: Наука, главная редакция физико-математической литературы, 1965. 640 с.
7. Foken T. 50 years of the Monin-Obukhov similarity theory // Boundary-Layer Meteorol. 2006. Vol. 119. P. 431–447. doi: 10.1007/s10546-006-9048-6
8. Monin A.S., Zilitinkevich S.S. Similarity theory and resistance laws for the planetary boundary layer // Boundary-Layer Meteorol. 1974. Vol. 7. P. 391–397. doi: 10.1007/BF00240840
9. Zilitinkevich S.S., Esau I. Resistance and heat-transfer laws for stable and neutral planetary boundary layers: Old theory advanced and re-evaluated // Q. J.R. Meteorol. Soc. 2005. Vol. 131. doi: 10.1256/qj.04.143
10. Kadantsev E., Mortikov E., Zilitinkevich S. The resistance law for stably stratified atmospheric planetary boundary layer // Quart. J. Roy. Met. Soc. 2020. doi: 10.1002/qj.4019
11. L’vov V.S., Pomyalov A., Procaccia I., Zilitinkevich S.S. Phenomenology of wall bounded Newtonian turbulence // Phys. Rev., E. 2006. Vol. 73. 016303. P. 1–13.
12. Shakura N.I., Sunyaev R.A., Zilitinkevich S.S. On the turbulent energy transport in accretion discs // Astronomy and Astrophysics. 1978. Vol. 62. 1–2. P. 179–187.
13. Zilitinkevich S.S. Heat transport by the meridional circulation cell and static stability of the atmosphere on a slowly rotating planet // Kosmicheskije Issledovanija. 1989. Vol. 27, No 6. P. 932–942.
14. Hunt J.C.R., Carlotti P. Statistical structure at the wall of the high Reynolds number turbulent boundary layer // Flow, Turbul. Combust. 2001. Vol. 66. P. 453–475. doi: 10.1023/A:1013519021030
15. Högström U., Hunt J.C.R., Smedman A.S. Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer // Boundary-Layer Meteorol. 2002. Vol. 103. P. 101–124. doi: 10.1023/A:1014579828712
16. McNaughton K.G., Brunet Y. Townsend’s hypothesis, coherent structures and Monin-Obukhov similarity // Boundary-Layer Meteorol. 2002. Vol. 102. P. 161–175. doi: 10.1023/A:1013171312407
17. Van de Boer A., Moene A.F., Graf A., Schüttemeyer D., Simmer C. Detection of entrainment influences on surface-layer measurements and extension of Monin-Obukhov similarity theory // Boundary-Layer Meteorol. 2014. Vol. 152. P. 19– 44. doi: 10.1007/s10546-014-9920-8
18. Zilitinkevich S.S., Hunt J.C.R., Esau I., Grachev A.A., Lalas D.P., Akylas E., Tombrou M., Fairall C.W., Fernando H.J.S., Baklanov A.A., Joffre S.M. The influence of large convective eddies on the surface-layer turbulence // Q. J.R. Meteorol. Soc. 2006. Vol. 132. P. 1423–1456. doi: 10.1256/qj.05.79
19. Schmidt H., Schumann U. Coherent structure of the convective boundary layer derived from large-eddy simulations // J. Fluid Mech. 1989. Vol. 200. P. 511–562. doi: 10.1017/S0022112089000753
20. Hellsten A., Zilitinkevich S. Role of convective structures and background turbulence in the dry convective boundary layer // Boundary-Layer Meteorol. 2013. Vol. 149. P. 323–353. doi: 10.1007/s10546-013-9854-6
21. Zilitinkevich S.S., Chalikov D.V. Determination of universal wind and temperature profiles in the atmospheric surface layer // Izvestija AN SSSR — Atmos. Ocean Phys. 1968. Vol. 4, No 3. P. 294–302.
22. Businger J.A., Wyngaard J.C., Izumi Y., Bradley E.F. Flux-Profile Relationships in the Atmospheric Surface Layer // J. Atmos. Sci. 1971. Vol. 28. P. 181–189. doi: 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2
23. Grachev A.A., Andreas E.L., Fairall C.W., Guest P.S., Persson P.O.G. SHEBA flux–profile relationships in the stable atmospheric boundary layer // Boundary-Layer Meteorol. 2007. Vol. 124. P. 315–333. doi: 10.1007/s10546-007-9177-6
24. Esau I., Grachev A. Turbulent Prandtl Number in Stably Stratified Atmospheric Boundary Layer: Intercomparison between LES and SHEBA Data. e-WindEng, 2007, 005.
25. Sharan M., Kumar P. Estimation of upper bounds for the applicability of non-linear similarity functions for non-dimensional wind and temperature profiles in the surface layer in very stable conditions // Proc. R. Soc. A Math. Phys. Eng. Sci. 2011. Vol. 467. P. 473–494. doi: 10.1098/rspa.2010.0220
26. Högström U. Review of some basic characteristics of the atmospheric surface layer // Boundary-Layer Meteorol. 1996. Vol. 78. P. 215–246. doi: 10.1007/BF00120937
27. Johansson C., Smedman A.-S., Högström U., Brasseur J.G., Khanna S. Critical test of the validity of Monin-Obukhov similarity during convective conditions // J. Atmos. Sci. 2001. Vol. 58. P. 1549–1566. doi: 10.1175/1520-0469(2001)058<1549:CTOTVO>2.0.CO;2
28. Ha K.J., Hyun Y.K., Oh H.M., Kim K.E., Mahrt L. Evaluation of boundary layer similarity theory for stable conditions in CASES-99 // Mon. Weather Rev. 2007. Vol. 135. P. 3474–3483. doi: 10.1175/MWR3488.1
29. Zilitinkevich S., Grachev A., Hunt J.C.R. Non-local vertical transport in the shear-free convective surface layer: new theory and improved parameterization of turbulent fluxes // Air Pollution Modelling and Its Application XII (Eds. S.-E. Gryning and N. Chaumerliac), Plenum Publishing Corporation, New York, 1998. P. 321–325.
30. Zilitinkevich S., Calanca P. An extended similarity-theory for the stably stratified atmospheric surface layer // Quart. J. Roy. Meteorol. Soc. 2000. Vol. 126. P. 1913–1923.
31. Zilitinkevich S. Towards revision of conventional flux-profile relationships for the stably stratified atmospheric surface layer // Air Pollution Modelling and Its Application XIII (Eds. S.-E. Gryning and E. Batchvarova), Kluwer Academic / Plenum Publishers, NY, 2000. P. 403–407.
32. Smedman A.S. Observations of a multi-level turbulence structure in a very stable atmospheric boundary layer // Boundary-Layer Meteorol. 1988. Vol. 44. P. 231–253. doi: 10.1007/BF00116064
33. Nieuwstadt F.T.M. The Turbulent Structure of the Stable, Nocturnal Boundary Layer // J. Atmos. Sci. 1984. Vol. 41. P. 2202–2216.
34. Glazunov A.V., Mortikov E.V., Barskov K.V., Kadancev E.V., Zilitinkevich S.S. The layered structure of stably stratified turbulent shear flows // Известия Российской академии наук. Физика атмосферы и океана. 2019. Т. 55. С. 13–26. doi: 10.31857/S0002-351555413-26
35. Zilitinkevich S.S., Elperin T., Kleeorin N., Rogachevskii I., Esau I., Mauritsen T., Miles M.W. Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes // Q. J.R. Meteorol. Soc. 2008. Vol. 134. P. 793–799. doi: 10.1002/qj.264
36. Sun J., Lenschow D.H., Burns S.P., Banta R.M., Newsom R.K., Coulter R., Frasier S., Ince T., Nappo C., Balsley B.B., Jensen M., Mahrt L., Miller D., Skelly B. Atmospheric Disturbances that Generate Intermittent Turbulence in Nocturnal Boundary Layers // Boundary-Layer Meteorol. 2004. Vol. 110. P. 255–279. doi: 10.1023/A:1026097926169
37. Li D., Katul G.G., Zilitinkevich S.S. Revisiting the turbulent Prandtl number in an idealized atmospheric surface layer // J. Atmos. Sci. 2015. Vol. 72. P. 2394–2410.
38. Zilitinkevich S.S., Perov V.L., King J.C. Near-surface turbulent fluxes in stable stratification: Calculation techniques for use in general-circulation models // Q. J.R. Meteorol. Soc. 2002. Vol. 128. P. 1571–1587. doi: 10.1002/qj.200212858309
39. Savijärvi H. Stable boundary layer: Parametrizations for local and larger scales // Q. J.R. Meteorol. Soc. 2009. Vol. 135. P. 914–921. doi: 10.1002/qj.423
40. Mauritsen T., Svensson G., Zilitinkevich S.S., Esau I., Enger L., Grisogono B. A total turbulent energy closure model for neutrally and stably stratified atmospheric boundary layers // J. Atmos. Sci. 2007. Vol. 64. doi: 10.1175/2007JAS2294.1
41. Canuto V.M., Cheng Y., Howard A.M., Esau I. Stably stratified flows: A model with no Ri(cr) // J. Atmos. Sci. 2008. Vol. 65. doi: 10.1175/2007JAS2470.1
42. Zilitinkevich S.S., Esau I. Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer // Atmospheric Boundary Layers. Springer New York, New York, NY, 2007. P. 37–49. doi: 10.1007/978-0-387-74321-9_4
43. Esau I. Simulation of Ekman boundary layers by large eddy model with dynamic mixed subfilter closure // Environ. Fluid Mech. 2004. Vol. 4. P. 273–303.
44. Mahrt L. Stratified Atmospheric Boundary Layers and Breakdown of Models // Theor. Comput. Fluid Dyn. 1998. Vol. 11. P. 263–279. doi: 10.1007/s001620050093
45. Zilitinkevich S.S., Esau I. On integral measures of the neutral barotropic planetary boundary layer // Boundary-Layer Meteorol. 2002. Vol. 104. P. 371–379. doi: 10.1023/A:1016540808958
46. Zilitinkevich S.S., Esau I. Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer // Boundary-Layer Meteorol. 2007. Vol. 125. P. 193–205. doi: 10.1007/s10546-007-9187-4
47. Zilitinkevich S., Esau I., Baklanov A. Further comments on the equilibrium height of neutral and stable planetary boundary layers // Q. J.R. Meteorol. Soc. 2007. Vol. 133. P. 265–271. doi: 10.1002/qj.27
48. Zilitinkevich S.S., Tyuryakov A., Troitskaya Y.I., Mareev S. Theoretical models of the altitude of an atmospheric boundary layer and turbulent involvement at its upper boundary // Izvestia RAS — Atmos. Ocean Phys. 2012. Vol. 48. P. 150–160.
49. Sandu I., Beljaars A., Bechtold P., Mauritsen T., Balsamo G. Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? // J. Adv. Model. Earth Syst. 2013. Vol. 5. P. 117–133. doi: 10.1002/jame.20013
50. Esau I., Tolstykh M., Fadeev R., Shashkin V., Makhnorylova S., Miles V., Melnikov V. Systematic errors in northern Eurasian short-term weather forecasts induced by atmospheric boundary layer thickness // Environ. Res. Lett. 2018. Vol. 13. 125009. doi: 10.1088/1748-9326/aaecfb
51. Zilitinkevich S.S., Esau I. Planetary boundary layer feedbacks in climate system and triggering global warming in the night, in winter and at high latitudes // Geography, Environment and Sustainability. 2009. Vol. 1, No 2. P. 20–34.
52. Esau I., Zilitinkevich S. On the role of the planetary boundary layer depth in climate system // Adv. Sci. Res. 2010. Vol. 4. P. 63–69.
53. Davy R., Esau I. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth // Nat. Commun. 2016. Vol. 7. 11690. doi: 10.1038/ncomms11690
54. Davy R., Esau I., Chernokulsky A., Outten S., Zilitinkevich S. Diurnal asymmetry to the observed global warming // Int. J. Climatol. 2017. Vol. 37. P. 79–93. doi: 10.1002/joc.4688
55. Petäjä T., Järvi L., Kerminen V.-M., Ding A., Sun J., Nie W., Kujansuu J., Virkkula A., Yang X., Fu C., Zilitinkevich S., Kulmala M. Enhanced air pollution via aerosol-boundary layer feedback in China // Scientific Reports. 2016. Vol. 6. 18998. doi: 10.1038/srep18998
56. Lappalainen H., Petaja T., Kujansuu J., Kerminen V.-M., Shvidenko A., Bäck J., Vesala T., Vihma T., de Leeuw G., Lauri A., Ruuskanen T., Lapshin V.B., Zaitseva N., Glezer O., Arshinov M., Spracklen D.V., Arnold S.R., Juhola S., Lihavainen H., Viisanen Y., Chubarova N., Chalov S., Filatov N., Skorokhod A., Elansky N., Dyukarev E., Esau I., Hari P., Kotlyakov V., Kasimov N., Bondur V., Matvienko G., Baklanov A., Mareev E., Troitskaya Y., Ding A., Guo H., Zilitinkevich S., Kulmala M. Pan-Eurasian Experiment (PEEX) — A research initiative meeting the grand challenges of the changing environment of the northern Pan-Eurasian Arctic-boreal areas // Geography, Environment and Sustainability. 2014. Vol. 7, No. 2. P. 13–48.
Review
For citations:
Esau I.N. XXI-st century: a shift of paradigm in the planetary boundary layer theory. Fundamental and Applied Hydrophysics. 2022;15(1):9-18. (In Russ.) https://doi.org/10.59887/fpg/ep89-n4z5-g6b6