Deriving of Turbulent Stresses in a Convectively Mixed Layer in a Shallow Lake Under Ice by Coupling Two ADCPs
https://doi.org/10.7868/S2073667321020027
Abstract
This paper presents a method for deriving turbulent stresses using a pair of ADCPs with one or two points of beam intersections. A specific experiment, which includes measurements of water temperature, under-ice irradiation levels, and velocity components in the convectively mixed layer of a shallow ice-covered boreal lake, validated the method. The experimental data allows calculations of both the pulsation intensities along the three orthogonal axes and off-diagonal components of the Reynolds tensor. The specific features of spring under-ice convection processes, in particular, the anisotropy of turbulent pulsations and the correlation of turbulence energy with the turbulence energy production (as the buoyancy flux), were described using the horizontal homogeneity assumption. Finally, the paper presents a qualitative analysis of the parameters and dynamics of energy-containing structures developing in the convective layer of small ice-covered lakes in spring.
About the Authors
S. R. BogdanovRussian Federation
185030, Aleksandra Nevskogo Pr., 50, Petrozavodsk
R. E. Zdorovennov
Russian Federation
185030, Aleksandra Nevskogo Pr., 50, Petrozavodsk
N. I. Palshin
Russian Federation
185030, Aleksandra Nevskogo Pr., 50, Petrozavodsk
G. E. Zdorovennova
Russian Federation
185030, Aleksandra Nevskogo Pr., 50, Petrozavodsk
A. Yu. Terzhevik
Russian Federation
185030, Aleksandra Nevskogo Pr., 50, Petrozavodsk
G. G. Gavrilenko
Russian Federation
185030, Aleksandra Nevskogo Pr., 50, Petrozavodsk
S. Yu. Volkov
Russian Federation
185030, Aleksandra Nevskogo Pr., 50, Petrozavodsk
T. V. Efremova
Russian Federation
185030, Aleksandra Nevskogo Pr., 50, Petrozavodsk
N. A. Kuldin
Russian Federation
185910, Lenina Pr., 33, Petrozavodsk
G. B. Kirillin
Germany
12587, Müggelseedamm, 310, Berlin
References
1. Howarth M.J., Souza A.J. Reynolds stress observations in continental shelf seas. Deep Sea Res II. 2005, 52(9–10), 1075–1086.
2. Guerra M., Thomson J. Turbulence measurements from five-beam acoustic doppler current profilers. J. Atmos. Oceanic Technol. 2017, 34(6), 1267–1284.
3. Kirillin G. et al. Turbulence in the stratified boundary layer under ice: observations from Lake Baikal and a new similarity model. Hydrol. Earth Syst. Sci. 2020, 24(4), 1691–1708.
4. Lohrmann A., Hackett B., Roed L. High-resolution measurements of turbulence, velocity, and stress using a pulse-topulse coherent sonar. J. Atmos. Oceanic Technol. 1990, 7(1), 19–37.
5. Lorke A., Wüest A. Application of coherent ADCP for turbulence measurements in the bottom boundary layer. J. Atmos. Oceanic Technol. 2005, 22, 1821–1828.
6. Wiles P.J. et al. A novel technique for measuring the rate of turbulent dissipation in the marine environment. Geophys. Res. Lett. 2006, 33, L21608. doi: 10.1029/2006GL027050
7. Nystrom E.A., Rehmann C.R., Oberg K.A. Evaluation of mean velocity and turbulence measurements with ADCPs. J. Hydraul. Eng. 2007, 133(12), 1310–1318.
8. Kirincich A.R., Rosman J.H. A Comparison of Methods for Estimating Reynolds Stress from ADCP Measurements in Wavy Environments. J. Atmos. Oceanic Technol. 2011, 28, 1539–1553. doi: 10.1175/JTECH-D-11–00001.1
9. Farmer D.M. Penetrative convection in the absence of mean shear. QJR Meteorol. Soc. 1975, 101, 869–891. doi: 10.1002/qj.49710143011
10. Mironov D. et al. Radiatively driven convection in ice-covered lakes: Observations, scaling, and a mixed layer model. J. Geophys. Res. 2002, 107(C4). doi: 10.1029/2001JC000892
11. Petrov M.P. et al. Motion of Water in an Ice-Covered Shallow Lake. Water Resources. 2007, 34(2), 113–122.
12. Kirillin G. et al. Physics of seasonally ice-covered lakes: a review. Aquat Sci. 2012, 74, 659–682. doi: 10.1007/s00027–012–0279-y
13. Bouffard D. et al. Ice-covered Lake Onega: effects of radiation on convection and internal waves. Hydrobiologia. 2016, 780 (1), 21–36. doi:10.1007/s10750–016–2915–3
14. Kirillin G. et al. Turbulent mixing and heat fluxes under lake ice: the role of seiche oscillations. Hydrol. Earth Syst. Sci. 2018, 22, 6493–6504. doi: 10.5194/hess-22–6493–2018
15. Bogdanov S. et al. Structure and dynamics of convective mixing in Lake Onego under ice-covered conditions. Inland Waters. 2019, 9(2), 177–192.
16. Volkov S. et al. Fine scale structure of convective mixed layer in ice-covered lake. Environ. Fluid Mech. 2019, 19, 751– 764. doi: 10.1007/s10652–018–9652–2
17. Zdorovennov R. et al. Interannual variability of ice and snow cover of a small shallow lake. Est. J. Earth Sci. 2013, 61(1), 26–32. doi: 10.3176/earth.2013.03
18. Greene A.D. et al. Using an ADCP to Estimate Turbulent Kinetic Energy Dissipation Rate in Sheltered Coastal Waters. J. Atmos. Oceanic Technol. 2015, 32, 318–333.
19. Deardorff J.W. Preliminary results from numerical integrations of the unstable planetary boundary layer. J. Atmos. Sci. 1970, 27, 1209–1211.
20. MacIntyre S. et al. Turbulence in a small Arctic pond. Limnol. Oceanogr. 2018, 63(6), 2337–2358. doi: 10.1002/lno.10941
21. Williams E., Simpson J.H. Uncertainties in Estimates of Reynolds Stress and TKE Production Rate Using the ADCP Variance Method. J. Atmos. Oceanic Technol. 2004, 21, 347–357. doi: 10.1175/1520–0426(2004)021<0347:UIEORS>2.0.CO;2
22. Henderson S.M. Turbulent production in an internal wave bottom boundary layer maintained by a vertically propagating seiche. J. Geophys. Res. Oceans. 2016, 121. doi: 10.1002/2015JC011071
23. Stacey M.T., Monismith S.G., Burau J.R. Measurements of Reynolds stress profiles in unstratified tidal flow. J. Geophys. Res. 1999, 104(C5), 10933–10949, doi: 10.1029/1998JC900095
24. Forrest A.L. et al. Convectively driven transport in temperate lakes. Limnol. Oceanogr. 2008, 53(5), 2321–2332. doi: 10.4319/lo.2008.53.5_part_2.2321
25. Korotenko K.A., Sentchev A.V., Schmitt F.G. Effect of variable winds on current structure and Reynolds stresses in a tidal flow: Analysis of experimental data in the eastern English Channel. Ocean Sci. 2012, 8(6), 1025–1040. doi: 10.5194/os-8–1025–2012
26. Yang B., Wells M., Li J., Yang J. Mixing, stratification and plankton under lake-ice during winter in a large lake: implications for spring dissolved oxygen levels. EarthArXiv Preprimts. 2019, Preprint. doi: 10.31223/osf.io/5uvwc
27. DelSontro T., del Giorgio P.A., Prairie Y.T. No longer a paradox: the interaction between physical transport and biological processes explains the spatial distribution of surface water methane within and across lakes. Ecosystems. 2018, 21(6), 1073–1087.
28. McGinnis D.F. et al. Enhancing surface methane fluxes from an oligotrophic lake: exploring the microbubble hypothesis. Environ. Sci. Technol. 2015, 49(2), 873–880.
29. Austin J.A. Observations of radiatively driven convection in a deep lake. Limnol. Oceanogr. 2019, 64(5), 2152–2160. doi:10.1002/lno.11175
30. Vermeulen B., Hoitink A.J.F., Sassi M.G. Coupled ADCPs can yield complete Reynolds stress tensor profiles in geophysical surface flows. Geophys. Res. Lett. 2011, 38, L06406. doi: 10.1029/2011GL046684
Review
For citations:
Bogdanov S.R., Zdorovennov R.E., Palshin N.I., Zdorovennova G.E., Terzhevik A.Yu., Gavrilenko G.G., Volkov S.Yu., Efremova T.V., Kuldin N.A., Kirillin G.B. Deriving of Turbulent Stresses in a Convectively Mixed Layer in a Shallow Lake Under Ice by Coupling Two ADCPs. Fundamental and Applied Hydrophysics. 2021;14(2):17-28. https://doi.org/10.7868/S2073667321020027