Evaluation of suspended matter effect on spectral light attenuation in Lake Teletskoye
https://doi.org/10.7868/S2073667320010049
Abstract
This study presents the results of the light attenuation coefficient measurements in the range of 400–800 nm in the waters of Lake Teletskoye, obtained in a summer cruise (19–23 June 2018). During the cruise in various locations, the attenuation coefficient values varied (to the base of natural logarithm) in the range of 0.2–4.4 m–1 within the stated wavelength range.
The relative spectral effect of the suspended matter was calculated along with the other major optically active components of the lake water: yellow matter, chlorophyll-a and pure water to assess the contribution of suspension to the total attenuation coefficient. Suspended matter spectral contribution to light attenuation at 430 nm wavelength appeared in the range of 2.3–33.4 %, and at 550 nm — 5.9–47.8 %. Optical microscopy was used to determine the particle size distribution and the number concentration of suspended particles. According to the measurements, weight-average particle radii in the water samples varied primarily within the range 0.5–0.8 µm, while the concentrations differed from 0.9∙106cm–3 to 3.3∙106cm–3. Particle size distribution was approximated by the Junge function with a determination coefficient from 0.63 to 0.99.
Keywords
About the Authors
О. B. AkulovaRussian Federation
Barnaul
V. I. Bukatyi
Russian Federation
Barnaul
References
1. Man’kovskiy V.I, Sherstyankin P.P. Spectral model of an indicator of weakening of a directional light in waters of Lake Baikal during the summer period. Morskoy Gidrofizicheskiy Zhurnal. 2007, 6, 39–46 (in Russian).
2. Kopelevich O.V. Low-parametrical model of optical properties of sea water. Optika Okeana. T.1. Fizicheskaya optika okeana / Pod red. A.S. Monina. M., Nauka, 1983, 208–235. (in Russian).
3. Man’kovskiy V.I. Spectral contribution of components of sea water to an indicator of weakening of a directional light in a surface water of the Mediterranean Sea. Morskoy Gidrofizicheskiy Zhurnal. 2011, 5, 14–29 (in Russian).
4. Levin I.M. Low-parametrical models of primary optical characteristics of sea water. Fundamentalnaya i Prikladnaya Gidrofizika. 2014, 7, 3, 3–22 (in Russian).
5. Reinart A., Paavel B., Pierson D., Strömbeck N. Inherent and apparent optical properties of Lake Peipsi, Estonia. Boreal Env. Res. 2004, 9, 429–445.
6. Mitchell B.G., Kahru M., Wieland J., Stramska М. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. Ocean Optics Protocols for Satellite. Ocean Color Sensor Validation. 2002, Revision 3, 2, 15, 231–257.
7. Onderka M., Rodný M., Velísková Y. Suspended particulate matter concentrations retrieved from self-calibrated multispectral satellite imagery. J. Hydrol. Hydromech. 2011, 59, 4, 251–261. DOI: 10.2478/v10098–011–0021–9.
8. Woźniak S.B., Stramski D. Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms. Appl. Opt. 2004, 43, 17, 3489–3503.
9. Woźniak S.B., Meler J., Lednicka B., Lednicka B., Zdun A., Stoń-Egiert J. Inherent optical properties of suspended particulate matter in the southern Baltic Sea. Oceanologia. 2011, 53(3), 691–729.
10. Korosov A.A., Pozdnyakov D.V., Shuchman R., Sayers M., Sawtell R., Moiseev A.V. Bio-optical retrieval algorithm for the optically shallow waters of Lake Michigan. I. Model description and sensitivity/robustness assessment. Transactions of KarRC RAS. 2017, 3, 79–92. DOI: 10.17076/lim473
11. Shuchman R.A., Leshkevich G., Sayers M.J., Johengen T.H., Brooks C.N., Pozdnyakov D. An algorithm to retrieve chlorophyll, dissolved organic carbon, and suspended minerals from Great Lakes satellite data. J. Great Lakes Res. 2013, 32, 14–33.
12. Churilova T.Ya., Moiseeva N.A., Latushkin А.A., Suslin V.V., Usoltseva M.V., Zakharova Yu.R., Titova L.A., Gnatovsky R. Yu., Blinov V.V. Preliminary results of bio-optical investigations at Lake Baikal. Limnol. and Freshwat. Biol. 2018, 1, 58–61. DOI:10.31951/2658–3518–2018-A-1–58.
13. Shi L., Mao Z., Wu J., Liu M., Zhang Y., Wang Z. Variations in spectral absorption properties of phytoplankton, non-algal particles and chromophoric dissolved organic matter in Lake Qiandaohu. Water. 2017, 9, 352, 1–20. DOI:10.3390/w9050352
14. Clavano W.R., Boss E., Karp-Boss L. Inherent optical properties of non-spherical Marine-like particles — from theory to observation. Oceanogr. and Marin. Biol.: An Ann. Rev. 2007, 45, 1–38.
15. Akulova O.B., Bukatyi V.I., Marusin K.V. Spatial variability of hydrooptical characteristics of Lake Teletskoye. Trudy KarNTs RAN. Seriya Limnologiya i Okeanologiya. 2019, 3, 16–27 (in Russian).
16. Selegey V.V., Dekhandskhyutter B., Klerks Ya., Vysotskiy E.M., Perepelova T.I. Physical and geological environment of Lake Teletskoye. Bel’giya, Korolevskiy Muzey Tsentral’noy Afriki. 2001, 105. 310 p. (in Russian).
17. Akulova O.B. Development of methods and the measuring computer system for assessment of ecologically significant hydrooptical characteristics of freshwater reservoirs (on the example of lakes of Altai Krai). Dis. … kand. tekh. nauk. Barnaul, IVEP SO RAN, 2015. 176 p. (in Russian).
18. Pope R.M., Fry E.S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Applied Optics. 1997, 36, 33, 8710–8723.
19. Smith R.C., Baker K.S. Optical properties of the clearest natural waters (200–800 nm). Applied Optics. 1981, 20, 2, 177–184.
20. Antonenkov D.A. Features of application of various methods of a research of dimensional structure and concentration of the substance weighed in water. Vіsnik SevDTU. 97: Mekhanіka, energetika, ekologіya: zb. nauk. pr. Sevastopol’. Vid-vo SevNTU, 2009, 181–187 (in Russian).
21. Van de Khyulst Light dispersion by small particles. M., Inostrannaya literatura, 1961. 357 p. (in Russian).
22. Dykman V.Z., Efremov O.I. Measurement of volume concentration of suspensions on pulsations of conductivity of sea water. Sistemy Kontrolya Okruzhayushchey Sredy. Metodicheskie, tekhnicheskie i programmnye sredstva: sb. nauch. tr. MGI NANU. Sevastopol’, 2003, 48–54 (in Russian).
23. The guide to a practical training to microbiology: Ucheb. posobie / Pod red. N.S. Egorova. 3-e izd., pererab. i dop. M., Izd-vo MGU, 1995. 224 p. (in Russian).
24. Bol’shakov G.F. Optical methods of determination of impurity of liquid environments. Novosibirsk, Nauka, 1984. 157 p. (in Russian).
25. Frayfel’der D. Physical biochemistry. M., Mir, 1980. 581 p. (in Russian).
26. Frolov Yu.G. Course of colloidal chemistry. Superficial phenomena and disperse systems: Uchebnik dlya vuzov. 2-e izd., pererab. i dop. M., Khimiya., 1988. 464 p. (in Russian).
27. Allen T. Particle size measurement: Powder sampling and particle size measurement. V. 1, 5th ed. London, UK, Chapman & Hall, 1997, 1–4.
28. Merkus G.H. Particle size measurements: Fundamentals, Practice, Quality. Springer Science+Business Media, 2009. 533 p.
29. Xu R. Particle Characterization: Light Scattering Methods. New York, Boston, Dordrecht, London, Moscow, Kluwer Academic Publishers, 2002. 397 p.
30. Reymers N.F. Popular biological dictionary. M., Nauka, 1991. 544 p. (in Russian).
31. Karbyshev S.F., Koval’skaya G.A., Pavlov V.E. Distribution of chemical elements in suspended substance of Lake Teletskoye on fractions and depths. Sb. tr. mezhdunar. konf. “Ekologiya Sibiri, Dal’nego Vostoka i Arktiki”. Tomsk, Mezhdunar. issled. tsentr po fizike okruzhayushchey sredy i ekologii Tomsk. nauch. tsentra SO RAN, 2001, 118–120 (in Russian).
32. Bader H. The hyperbolic distribution of particle sizes. J. Geophys. Res. 1970, 75(15), 2822–2830.
33. Erlov N.G. Sea optics. L., Gidrometeoizdat, 1980. 248 p. (in Russian).
Review
For citations:
Akulova О.B., Bukatyi V.I. Evaluation of suspended matter effect on spectral light attenuation in Lake Teletskoye. Fundamental and Applied Hydrophysics. 2020;13(1):35-44. https://doi.org/10.7868/S2073667320010049