Airborne lidar bathymetry of coastal areas at night flight altitude
https://doi.org/10.7868/S2073667319040105
Abstract
Airborne lidar bathymetry survey of Bechevinsky Bay is distinguished by difficult flight conditions (the narrow bay is surrounded by high hills). The flight altitude of the aircraft during survey varied within the range of 500 to 1200 m. The survey was performed using the Airborne Polarization Lidar APL-3 (probe pulse energy is 40 mJ, duration of probe pulse 7 ns, diameter of the receiving optical system is 100 mm). The maximum depth of sounding of the bottom from altitude of 500 m was 21.5 m, from altitude of 1200 m – 17.5 m. The energy of the probe pulse required to obtain bottom return from different altitudes is estimated. It is necessary to increase the pulse energy by 20 times to locate the bottom of 25 m depth from a safe for flying altitude of 2500 m. An increase of survey flight altitude from 200 m to 2500 m under these conditions for obtain bottom return at a depth of 25 m requires a 150-fold increase of the pulse energy.
About the Authors
V. A. GlukhovRussian Federation
Moscow
St. Petersburg
Yu. A. Goldin
Russian Federation
Moscow
M. A. Rodionov
Russian Federation
Moscow
B. A. Gureev
Russian Federation
Moscow
O. V. Glitko
Russian Federation
Moscow
References
1. Kutalmis Saylam, John R. Hupp, Aaron R. Averett, William F. Gutelius & Brent W. Gelhar Airborne lidar bathymetry: assessing quality assurance and quality control methods with Leica Chiroptera examples. International Journal of Remote Sensing. 2018, 39:8, 2518—2542. DOI: 10.1080/01431161.2018.1430916
2. Chust G., Grande M., Galparsoro I., Uriarte A., Borja Á. Capabilities of the bathymetric hawk eye LiDAR for coastal habitat mapping: a case study within a Basque estuary. Estuar. Coast. Shelf Sci. 2010, 89, 200—213.
3. Vasilkov A.P., Goldin Yu.A., Gureev B.A., Hoge F.E., Swift R.N., Wright C.W. Airborne polarized lidar detection of scattering layers in the ocean. Appl. Opt. 2001, 40, 4353—4364.
4. Costa B.M., Battista T.A., Pittman S.J. Comparative evaluation of airborne LiDAR and ship-based multibeam SoNAR bathymetry and intensity for mapping coral reef ecosystems. Remote Sensing of Environment. 2009, 113, 1082—1100.
5. Gisler A., Thayer J.P., Nderson C., Crowley G. The First UAV-Borne Scanning Topographic and Bathymetric Lidar System for Mapping Coastal Regions. American Geophysical Union, Fall Meeting 2018, abstract #EP52D-33.
6. CZMIL Airborne Bathymetric Lidar Summary Specification Sheet URL: http://www.gstdubai.com/downloads/CZMIL-Specsheet-140814-WEB.pdf (date of access: 12.05.2019).
7. Leica Chiroptera 4X Bathymetric & Topographic LiDAR. URL: https://leica-geosystems.com/en-gb/products/airborne-systems/bathymetric-lidar-sensors/leica-chiroptera (date of access: 12.05.2019).
8. Irish J.L., McClung J.K., Lillycrop W.J. Airborne Lidar Bathymetry: The SHOALS System. US Army Engineer District - Mobile. Mobile, United States, 2016.
9. RIEGL VQ-880-G Specification Sheet URL: http://www.riegl.com/uploads/tx_pxpriegldownloads/Infosheet_VQ-880-G_2016-05-23.pdf (date of access: 12.05.2019).
10. Kim M. et al. Modeling of airborne bathymetric lidar waveforms. Journal of Coastal Research. 2016, 76, SI, 18—30.
11. Firat Erena, Shachak Pe’erib, Yuri Rzhanov, Larry Ward. Bottom characterization by using airborne lidar bathymetry (ALB) waveform features obtained from bottom return residual analysis. Remote Sensing of Environment. 2018, 206, 260—274.
12. Collin A., Archambault P., Long B. Mapping the shallow water seabed habitat with the SHOALS. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2947—2955.
13. Tulldahl H.M., Wikström S.A. Classification of aquatic macrovegetation and substrates with airborne lidar. Remote Sens. Environ. 2012, 121, 347—357.
14. Pe’eri S., Philpot W. Increasing the existence of very shallow-water LIDAR measurements using the red-channel waveforms. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1217—1223.
15. Dolin L.S. Optical Bathymetry Based on Halo effect. Proceeding of IX All Russia Conference Current problems in optics of natural waters ONW’2017. Saint-Petersburg, 2017, 102—107.
16. Gao Jay. Bathymetric mapping by means of remote sensing: methods, accuracy and limitations. Progress in Physical Geography. 2009, 33(1), 103—116.
17. Glukhov V.A., Goldin Yu.A., Rodionov M.A. Experimental estimation of the capabilities of the lidar PLD-1 for the registration of various hydro-optical irregularities of the sea water column. Fundamentalnaya i Prikladnaya Gidrofizika. 2017, 10, 2, 41—48.
18. Dolina I.S., Dolin L.S. Simulation of lidar images of nonlinear internal waves in the shallow sea. Fundamentalnaya i Prikladnaya Gidrofizika. 2017, 10, 1, 31—36.
Review
For citations:
Glukhov V.A., Goldin Yu.A., Rodionov M.A., Gureev B.A., Glitko O.V. Airborne lidar bathymetry of coastal areas at night flight altitude. Fundamental and Applied Hydrophysics. 2019;12(4):85-93. (In Russ.) https://doi.org/10.7868/S2073667319040105