Preview

Fundamental and Applied Hydrophysics

Advanced search

Large-scale structure of convectively-mixed layer in a shallow ice-covered lake

https://doi.org/10.7868/S2073667319010040

Abstract

The paper represents findings based on observational data obtained in shallow Lake Vendyurskoe during early-spring under-ice convection development. The use of highly-precise temperature sensors allowed to quantitatively describe dynamics of the convectively-mixed layer and to estimate its integral parameters. Currents within convectively-mixed layer were registered with Acoustic Doppler Current Profilers. Despite relatively low (mm/s) current velocities, convectivelymixed layer dynamics is presented by the wide spectrum of pulsations typical for the developed turbulent regime. Main attention is paid to the study of low-frequency fluctuations, i. e. large-scale convectively-mixed layer structure. The use of hodographs and progressive vector diagrams allowed revealing a system of convective cells functioning as coherent structures. Observed irregularity of pulsations in the low-frequency part of spectrum does not contradict to the existence of quasi-deterministic cells. Dynamics of such pulsations can be considered as an example of the chaos onset in lowdimensional systems. The cell recognition procedure was based on fitting the experimental progressive vector diagrams to the set of diagrams calculated for the case of idealized cell models. Estimation of the cell parameters is performed in frames of the developed procedure of their identification.

About the Authors

S. Yu. Volkov
Northern Water Problems Institute, Karelian Research Center, Russian Academy of Sciences
Russian Federation

Petrozavodsk



S. R. Bogdanov
Northern Water Problems Institute, Karelian Research Center, Russian Academy of Sciences
Russian Federation

Petrozavodsk



G. E. Zdorovennova
Northern Water Problems Institute, Karelian Research Center, Russian Academy of Sciences
Russian Federation

Petrozavodsk



R. E. Zdorovennov
Northern Water Problems Institute, Karelian Research Center, Russian Academy of Sciences
Russian Federation

Petrozavodsk



N. I. Palshin
Northern Water Problems Institute, Karelian Research Center, Russian Academy of Sciences
Russian Federation

Petrozavodsk



A. Yu. Terzhevik
Northern Water Problems Institute, Karelian Research Center, Russian Academy of Sciences
Russian Federation

Petrozavodsk



References

1. Kelley D. E. Convection in ice-covered lakes: effects on algal suspension // J. Plankton Res. 1997, 19, P. 859—1880. doi: 10.1093/ plankt/19.12.1859

2. Zilitinkevich S. S. Turbulent Penetrative Convection. Aldershot: Avebury Tech. 1991. 180 p.

3. Lohse D., Xia K.-Q. Small-Scale Properties of Turbulent Rayleigh-Benard Convection // Ann. Rev. Fluid Mech. 2010, 42, P. 335—364.

4. Mironov D. et al. Radiatively driven convection in ice-covered lakes: Observations, scaling, and a mixed layer model // J. Geophys. Res. 2002. 107(C4). doi:10.1029/2001JC000892.

5. Lorke A., Wüest A. Application of Coherent ADCP for Turbulence Measurements in the Bottom Boundary Layer // J. Atmos. Oceanic Technol. 2005. 22. P. 1821—1828.

6. Wiles P. J. et al. A novel technique for measuring the rate of turbulent dissipation in the marine environment // Geophys. Res. Lett. 2006. 33. L21608. doi:10.1029/2006GL027050.

7. Mironov D. V. Radiatively-driven convection in ice-covered lakes: observations; LES, and bulk modeling // Proc. of the Workshop on Interdisciplinary Aspects of Turbulence: Ringberg Castle, Tegernsee, Germany, April 18—25, 2005, P. 105—111.

8. Lenschow D. H., Stephens P. L. The role of thermals in the convective boundary layer // Boundary-Layer. Meteorol. 1980. 19. P. 509—532. https://doi.org/10.1007/BF00122351.

9. Jonas T. Convective mixing processes in natural waters. Ph.D. Thesis, Eidg. Tech. Hochschule, Zürich, Switzerland. 2001. 113 p.

10. Malm J. et al. A field study on currents in a shallow ice-covered lake // Limnol Oceanogr. 1998. 43. P. 1669—1679.

11. Lorenz E. N. Deterministic nonperiodic flow // J. Atmospheric Sci. 1963. 20. P. 130—141.

12. Lord Rayleigh O.M. F.R.S. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side // Philosoph. Magazine Series 6. 1916. 32. 192. P. 529—546.

13. Bisshopp F. E. On two-dimensional cell patterns // J. Math. Anal. Appl. 1960. 1. P. 373—385.

14. Besicovitch A. S. Almost periodic functions. Cambridge Univ. Press., 1932. 180 p.

15. Maeda I. Simple Quasi-periodic Functions and an Inverse Power Law // J. Facul. Sci., Hokkaido University. Series 7, Geophysics. 1996. 10(1). P. 21—30.

16. Гетлинг А. В. Формирование пространственных структур конвекции Рэлея-Бенара // УФН. 1991. 161(9). C. 1—80.

17. Straus J. M. Penetrative convection in a layer of fluid heated from within // Astrophys. J. 1976. 209. 179—189.

18. Гершуни Г. З., Жуховицкий Е. М. Конвективная устойчивость несжимаемой жидкости. М.: Наука, 1972. 392 с.

19. Goluskin D., van der Poel E. P. Penetrative internally heated convection in two and three dimensions // J. Fluid Mech. 2016. 791. R6. doi:10.1017/jfm.2016.69.

20. Chasnov J. R., Tse K. L. Turbulent penetrative convection with an internal heat source // Fluid Dynam. Res. 2001. 28. P. 397—421. doi:10.1016/S0169-5983(00)00037-X.


Review

For citations:


Volkov S.Yu., Bogdanov S.R., Zdorovennova G.E., Zdorovennov R.E., Palshin N.I., Terzhevik A.Yu. Large-scale structure of convectively-mixed layer in a shallow ice-covered lake. Fundamental and Applied Hydrophysics. 2019;12(1):30-39. (In Russ.) https://doi.org/10.7868/S2073667319010040

Views: 104


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)