On Approaches to Improving the Description of North Sea Water Inflows in the General Circulation Models of the Baltic Sea
https://doi.org/10.59887/2073-6673.2025.18(3)-3
EDN: MPRZSL
Abstract
The paper considers the causes of underestimation of bottom salinity in the general circulation models of the Baltic Sea. The highly efficient Oceananigans model is used to calculate the propagation of the inflow of saline North Sea waters in the bottom layer of the Baltic Sea in the period January-April 1993. The results of these calculations are in better agreement with the V.T. Paka high-frequency scanning data of the vertical structure of the sea with a vertical resolution of 0.25 to 0.5 m and distances between stations of about 500 m than the results of a similar calculation (reanalysis) for the same situation performed using the NEMO-Nordic model. This was achieved by significantly reducing numerical diffusion by increasing the vertical resolution and using high-order advection schemes in the Oceananigans model without using the observational data assimilation procedure. The above improvements to the Oceananigans model reduced the calculation speed by only 30 %. The developed model configuration gives certain hope for obtaining, without the assimilation procedure, adequate estimates of the propagation of the bottom gravity density current in the Baltic Sea and its interaction with sediments, including oxygen exchange, which is important for modeling marine ecosystems.
Keywords
About the Authors
R. E. VankevichRussian Federation
36 Nakhimovsky Prosp., Moscow 117997
A. V. Isaev
Russian Federation
36 Nakhimovsky Prosp., Moscow 117997
V. A. Ryabchenko
Russian Federation
36 Nakhimovsky Prosp., Moscow 117997
References
1. Mohrholz V, Naumann M, Nausch G, Krüger S, Gräwe U. Fresh oxygen for the Baltic Sea — An exceptional saline inflow after a decade of stagnation. Journal of Marine Systems. 2015;148:152–166. https://doi.org/10.1016/j.jmarsys.2015.03.005
2. Gräwe U, Naumann M, Mohrholz V, Burchard H. Anatomizing one of the largest saltwater inflows into the Baltic Sea in December 2014. Journal of Geophysical Research: Oceans. 2015;120:7676–7697. https://doi.org/10.1002/2015jc011269
3. Mohrholz V. Major Baltic Inflow Statistics — Revised. Frontiers in Marine Science. 2018;5:384. https://doi.org/10.3389/fmars.2018.00384
4. Lehmann A. A three-dimensional baroclinic eddy-resolving model of the Baltic Sea. Tellus Series A: Dynamic Meteorology and Oceanography. 1995;47:1013–1031. https://doi.org/10.3402/tellusa.v47i5.11969
5. Meier M, Doescher R, Coward AC, Nycander J, Döös K. RCO — Rossby Centre regional Ocean climate model: model description (version 1.0) and first results from the hindcast period 1992/93. Tech Rep. 1999;(26): SMHI, Norrköping, Sweden.
6. Funkquist L, Kleine E. HIROMB: An introduction to HIROMB, an operational baroclinic model for the Baltic Sea. Reports Oceanogr. 2007;(37): Swedish Meteorological and Hydrological Institute, Norrköping, Sweden.
7. Berg P, Poulsen JW. Implementation details for HBM. Tech Rep. 2012; Danish Meteorological Institute, Copenhagen, Denmark.
8. Dietze H, Löptien U, Getzlaff K. MOMBA 1.1 — a high-resolution Baltic Sea configuration of GFDL’s Modular Ocean Model. Geoscientific Model Development. 2014;7:1713–1731. https://doi.org/10.5194/gmd7-1713-2014
9. Gräwe U, Naumann M, Mohrholz V, Burchard H. Anatomizing one of the largest saltwater inflows into the Baltic Sea in December 2014. Journal of Geophysical Research: Oceans. 2015;120:7676–7697. https://doi.org/10.1002/2015jc011269
10. Ryabchenko VA, Karlin LN, Isaev AV, et al. Model estimates of the eutrophication of the Baltic Sea in the contemporary and future climate. Oceanology. 2016;56(1):36–45. https://doi.org/10.7868/S0030157416010160
11. Hordoir R, Axell L, Höglund A, et al. Nemo-Nordic 1.0: a NEMO-based ocean model for the Baltic and North seas — research and operational applications. Geoscientific Model Development. 2019;12:363–386. https://doi.org/10.5194/gmd12-363-2019
12. Kärnä T, Ljungemyr P, Falahat S, et al. Nemo-Nordic 2.0: operational marine forecast model for the Baltic Sea. Geoscientific Model Development. 2021;14:5731–5749. https://doi.org/10.5194/gmd14-5731-2021
13. Madec G, Bourdallé-Badie R, Chanut J, et al. NEMO ocean engine. Zenodo. 2019. https://doi.org/10.5281/zenodo.3878122
14. Deremble B, Hogg AM, Berloff P, Dewar WK. On the application of no-slip lateral boundary conditions to ‘coarsely’ resolved ocean models. Ocean Modelling. 2011;39(3):411–415. https://doi.org/10.1016/j.ocemod.2011.05.002
15. Nasser AA. Advancing the representation of flows along topography in z-coordinate ocean models. Ocean, Atmosphere. Sorbonne Université; 2023. https://theses.hal.science/tel04399405v1
16. Hill C, Ferreira D, Campin J-M, Marshall J, Abernathey R, Barrier N. Controlling spurious diapycnal mixing in eddy-resolving height-coordinate ocean models — Insights from virtual deliberate tracer release experiments. Ocean Modelling. 2012;45–46:14–26. https://doi.org/10.1016/j.ocemod.2011.12.001
17. Ilicak M, Adcroft A, Griffies S, Hallberg R. Spurious dianeutral mixing and the role of momentum closure. Ocean Modelling. 2012;45–46:37–58. https://doi.org/10.1016/j.ocemod.2011.10.003
18. Ilicak M. Quantifying spatial distribution of spurious mixing in ocean models. Ocean Modelling. 2016;108:30–38. https://doi.org/10.1016/j.ocemod.2016.11.002
19. Megann A. Estimating the numerical diapycnal mixing in an eddy-permitting ocean model. Ocean Modelling. 2018;121:19–33. https://doi.org/10.1016/j.ocemod.2017.11.001
20. Campin J-M, Goosse H. Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate. Tellus Series A: Dynamic Meteorology and Oceanography. 1999;51A:412–430. https://doi.org/10.3402/tellusa.v51i3.13468
21. Legg S, Hallberg RW, Girton JB. Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models. Ocean Modelling. 2006;11(1–2):69–97. https://doi.org/10.1016/j.ocemod.2004.11.006
22. Riemenschneider U, Legg S. Regional simulations of the Faroe Bank Channel overflow in a level model. Ocean Modelling. 2007;17(2):93–122. https://doi.org/10.1016/j.ocemod.2007.01.003
23. Legg S, Jackson L, Hallberg RW. Eddy-Resolving Modeling of Overflows. In: Ocean Modeling in an Eddying Regime. American Geophysical Union; 2008. p. 63–81. (eprint: https://onlinelibrary.wiley.com/doi/pdf/). https://doi.org/10.1029/177GM06
24. Reckinger SM, Petersen MR, Reckinger SJ. A study of overflow simulations using MPAS-Ocean: Vertical grids, resolution, and viscosity. Ocean Modelling. 2015;96:291–313. https://doi.org/10.1016/j.ocemod.2015.09.006
25. Laanaia N, Wirth A, Molines JM, Barnier B, Verron J. On the numerical resolution of the bottom layer in simulations of oceanic gravity currents. Ocean Science. 2010;6(2):563–572. https://doi.org/10.5194/os6-563-2010
26. Gräwe U, Holtermann P, Klingbeil K, Burchard H. Advantages of vertically adaptive coordinates in numerical models of stratified shelf seas. Ocean Modelling. 2015;92. https://doi.org/10.1016/j.ocemod.2015.05.008
27. Winton M, Hallberg RW, Gnanadesikan A. Simulation of Density-Driven Frictional Downslope Flow in Z-Coordinate Ocean Models. Journal of Physical Oceanography. 1998;28:2163–2174. https://doi.org/10.1175/1520-0485(1998)0282.0.CO;2
28. Lemarié F, Debreu L, Shchepetkin A, McWilliams J. On the stability and accuracy of the harmonic and biharmonic isoneutral mixing operators in ocean models. Ocean Modelling. 2012;52–53:9–35. https://doi.org/10.1016/j.ocemod.2012.04.007
29. Wagner GL, Silvestri S, Constantinou NC, Ramadhan A, Campin JM, Hill C, et al. High-level, high-resolution ocean modeling at all scales with Oceananigans. arXiv preprint arXiv:2502.14148. 2025.
30. Paka VT, Kushnikov VV. About using temperature halosondes in towing mode. Oceanology. 1989;29(1):160–163. (in Russian)
31. Paka VT. Thermohaline structure of the waters over the cross sections in the Slupsk Channel of the Baltic Sea in spring, 1993. Oceanology. 1996;36(2):188–198.
32. Zhurbas VM, Paka VM. Intrusive stratification of the halocline in the Gotland Basin caused by the large influx of North Sea waters into the Baltic in January 1993. Oceanology. 1997;33(4):549. (in Russian)
33. Zhurbas VM, Paka VM. Mesoscale thermohaline variability in the Eastern Gotland Basin following the 1993 major Baltic inflow. Journal of Geophysical Research. 1997;102(C9):20917–20926. https://doi.org/10.1029/97JC00443
34. Zhurbas VM, Paka VT. What drives thermohaline intrusions in the Baltic Sea? Journal of Marine Systems. 1999;21(1– 4):229–241. https://doi.org/10.1016/S0924-7963(99)00016-0
35. Baltic Sea Physics Reanalysis | Copernicus Marine Service. Copernicus Marine Data Store. URL: https://data.marine. copernicus.eu/product/description. https://doi.org/10.48670/moi 00013 (дата обращения: 10.06.2025)
36. Nerger L, Hiller W, Oter J. PDAF-The Parallel Data Assimilation Framework: Experiences with Kalman Filtering. In: World Scientific; 2005. p. 63–83. https://doi.org/10.1142/9789812701831_0006
37. International Council for the Exploration of the Sea (ICES). ICES. URL: http://www.ices.dk (дата обращения: 10.06.2025)
38. Silvestri S, Wagner G, Campin J-M, Constantinou N, Hill C, Souza A, Ferrari R. A new WENO-based momentum advection scheme for simulations of ocean mesoscale turbulence. 2023. https://doi.org/10.22541/essoar.170110657.76489860/v1
39. Baltic Nest Institute, Stockholm University. Data Assimilation System. URL: https://nest.su.se/das/ (дата обращения: 10.06.2025)
40. Umlauf L, Burchard H. A generic length-scale equation for geophysical turbulence models. Journal of Marine Research. 2003;61(2):235–265. https://doi.org/10.1357/002224003322005087
41. Wagner G, Hillier A, Constantinou N, Silvestri S, Souza A, Burns K, et al. Formulation and Calibration of CATKE, a One-Equation Parameterization for Microscale Ocean Mixing. Journal of Advances in Modeling Earth Systems. 2025;17. https://doi.org/10.1029/2024MS004522
42. Beckmann A, Döscher R. A method for improved representation of dense water spreading over topography in geopotential-coordinate models. Journal of Physical Oceanography. 1997;27(3):581–591. https://doi.org/10.1175/1520-0485(1997)0272.0.CO;2
43. Zhurbas VM, Elken J, Paka VT, Piechura J, Väli G, Chubarenko I, Golenko N, Shchuka S. Structure of unsteady overflow in the Słupsk Furrow of the Baltic Sea. Journal of Geophysical Research. 2012;117(C4): C04027. https://doi.org/10.1029/2011JC007284
Review
For citations:
Vankevich R.E., Isaev A.V., Ryabchenko V.A. On Approaches to Improving the Description of North Sea Water Inflows in the General Circulation Models of the Baltic Sea. Fundamental and Applied Hydrophysics. 2025;18(3):37-52. (In Russ.) https://doi.org/10.59887/2073-6673.2025.18(3)-3. EDN: MPRZSL























