Investigation of the Dependence of Lidar Echo Signal Characteristics on the Length of the Sounding Path
https://doi.org/10.59887/2073-6673.2025.18(2)-11
EDN: QWDKNG
Abstract
Field measurements of the characteristics of the bottom-reflected lidar echo signal were conducted in the waters of Bechevinskaya Bay. The studies employed the APL‑3 airborne polarization lidar (sounding pulse energy of 45 mJ, receiving optical system diameter of 100 mm, and system response function duration at the 0.5 level of 10.8 ns). The depth range during the investigations varied from 3 to 22 m, while the flight altitude ranged from 500 to 1200 m. The hydrooptical characteristics of the bay waters were assessed based on lidar sounding data. For the analysis of field measurement data, areas with similar values of the lidar attenuation coefficient were selected. The results of field experiments demonstrated that the relationship between the magnitude of the lidar echo signal and the length of the sounding path for water layers and the seabed is more complex than what is suggested by the conventional form of the lidar equation. The introduction of an additional term into the lidar equation, which defines the dispersion of the irradiance distribution in the cross-section of an infinitely narrow beam of light passing through a water layer of a given thickness, allowed for a more accurate description of the obtained experimental dependencies. The registered effect must be taken into account when designing lidar systems, as well as during the processing and analysis of lidar survey data.
About the Authors
V. A. GlukhovRussian Federation
36 Nakhimovsky Prosp., Moscow 117997
Yu. A. Goldin
Russian Federation
36 Nakhimovsky Prosp., Moscow 117997
O. V. Glitko
Russian Federation
36 Nakhimovsky Prosp., Moscow 117997
References
1. Churnside JH. Review of profiling oceanographic lidar. Optical Engineering. 2014;53(5): 051405–051405. doi:10.1117/1.OE.53.5.051405
2. Chen W, Chen P, Zhang H. et al. Review of airborne oceanic lidar remote sensing. Intelligent Marine Technology Systems. 2023;1(10). doi:10.1007/s44295-023-00007-y
3. Glukhov VA, Goldin YuA. Marine profiling lidars and their application for oceanological problems. Fundamental and Applied Hydrophysics. 2024;17(1):104–128. doi:10.59887/2073-6673.2024.17(1)-9
4. Vasilkov AP, Goldin YuA, Gureev BA. et al. Airborne polarized lidar detection of scattering layers in the ocean. Applied Optics. 2001;40(24):4353–4364. doi:10.1364/AO.40.004353
5. Churnside JH, Donaghay PL. Thin scattering layers observed by airborne lidar. ICES Journal of Marine Science. 2009;66(4):778–789. doi:10.1093/icesjms/fsp029
6. Collister BL, Zimmerman RC, Hill VJ. et al. Polarized lidar and ocean particles: insights from a mesoscale coccolithophore bloom. Applied Optics. 2020;59(15):4650–4662. doi:10.1364/AO.389845
7. Peituo Xu, Dong Liu, Yibing Shen et al. Design and validation of a shipborne multiple-field-of-view lidar for upper ocean remote sensing. Journal of Quantitative Spectroscopy and Radiative Transfer. 2020;254:107201. doi:10.1016/j.jqsrt.2020.107201
8. Glukhov VA, Goldin YuA, Glitko OV. et al. Investigation of the Relationships between the Parameters of Lidar Echo Signals and Hydrooptical Characteristics in the Western Kara Sea. Oceanology. 2023;63(S1): S119–S130. doi:10.1134/S0001437023070044
9. Glukhov VA, Goldin YuA, Glitko OV, Glukhovets DI, Rodionov MA. A comparison of the Information Content of Orthogonally Polarized Components of Lidar Echo Signal for Evaluating Hydrooptical Characteristics of the Near-Surface Layer. Fundamental and Applied Hydrophysics. 2024;17(3):32–43. doi:10.59887/2073–6673.2024.17(3)-3
10. Churnside JH, Marchbanks RD, Le JH. et al. Airborne lidar detection and characterization of internal waves in a shallow fjord. Journal of Applied Remote Sensing. 2012;6(1):063611–063611. doi:10.1117/1.JRS.6.063611
11. Dolin LS, Dolina IS, Savel’ev VA. A lidar method for determining internal wave characteristics. Izvestiya, Atmospheric and Oceanic Physics. 2012;48(4):444–453. doi:10.1134/S0001433812040068
12. Glukhov VA., Goldin YuA., Rodionov MA. Method of Internal Waves Registration by Lidar Sounding in Case of Wa ters with Two-Layer Sratification of Hydrooptical Characteristics. Fundamental and Applied Hydrophysics. 2021;14(3):86– 97. doi:10.7868/S2073667321030084 (in Russian).
13. Philpot W. Airborne Laser Hydrography II. 2019. doi:10.7298/JXM9-G971
14. Riegl VQ‐880‐G Data sheet. URL: http://www.riegl.com/uploads/tx_pxpriegldownloads/Infosheet_VQ‑880-G_2016-05-23.pdf (Accessed: 21.02.2025).
15. Lin Wu, Yifu Chen, Yuan Le et al. A high-precision fusion bathymetry of multi-channel waveform curvature for bathymetric LiDAR systems. International Journal of Applied Earth Observation and Geoinformation. 2024;128(103770). doi:10.1016/j.jag.2024.103770
16. Mandlburger G. A review of active and passive optical methods in hydrography. The International Hydrographic Review. 2022;28:8–52. doi:10.58440/ihr‑28-a15
17. Mandlburger G, Hauer C, Wieser M, Pfeifer N. Topo-Bathymetric LiDAR for Monitoring River Morphodynamics and Instream Habitats — A Case Study at the Pielach River. Remote Sensing. 2015;7:6160–6195. doi:10.3390/rs70506160
18. Glukhov VA, Goldin YuA, Rodionov MA, Gureev BA, Glitko OV. Airborne lidar bathymetry of coastal areas at night flight altitude. Fundamental and Applied Hydrophysics. 2019;12(4):85–93. doi:10.7868/S2073667319040105 (In Russian)
19. Churnside JH, Hair JW, Hostetler CA, Scarino AJ. Ocean backscatter profiling using high-spectral-resolution lidar and a perturbation retrieval. Remote Sensing. 2018;10(12):2003. doi:10.3390/rs10122003
20. Lu X, Hu Y, Trepte C, Zeng S, Churnside JH. Ocean sub-surface studies with the CALIPSO spaceborne lidar. Journal of. Geophysical Research. Oceans. 2014;119:4305–4317. doi:10.1002/2014JC009970
21. Kim M, Kopilevich Y, Feygels V. et al. Modeling of airborne bathymetric lidar waveforms. Advances in Topobathymetric Mapping, Models, and Applications. Journal of Coastal Research, Special Issue. 2016;76:18–30. Coconut Creek (Florida), doi:10.2112/SI76-003
22. Kim M. Airborne Waveform Lidar Simulator Using the Radiative Transfer of a Laser Pulse. Appl. Sci. 2019;9(12):2452. doi:10.3390/app9122452
23. Glukhov V.A., Goldin Yu.A., Glitko O.V., Rodionov M.A. Airborne polarizing lidar for surveying marine areas. Proceedings of the XXVIII International Symposium “Optics of the atmosphere and ocean. Atmospheric Physics”, Tomsk, July 04–08, 2022. Tomsk, Publishing House of IOA SB RAS, 2022, 187–190 (in Russian).
24. Glukhov VA. The patterns of backscatter signal formation in LIDAR sounding of the near-surface layers of seawater and the seafloor. Diss. … kand. fiz.-mat. nauk. M., 2024. 115 p. (in Russian).
25. Wang CK, Philpot WD. Using airborne bathymetric lidar to detect bottom type variation in shallow waters. Remote Sensing of Environment. 2007;106(1):123–135. doi:10.1016/j.rse.2006.08.003
26. Gordon H.R. Interpretation of airborne oceanic lidar: effects of multiple scattering. Applied Optics. 1982;21(16):2996– 3001. doi:10.1364/AO.21.002996
27. Dolina IS, Dolin LS, Levin IM, Rodionov AA, Savel’ev VA. Inverse problems of lidar sensing of the ocean. Current Research on Remote Sensing, Laser Probing, and Imagery in Natural Waters. SPIE. 2007;6615:104–113.
Review
For citations:
Glukhov V.A., Goldin Yu.A., Glitko O.V. Investigation of the Dependence of Lidar Echo Signal Characteristics on the Length of the Sounding Path. Fundamental and Applied Hydrophysics. 2025;18(2):151-161. https://doi.org/10.59887/2073-6673.2025.18(2)-11. EDN: QWDKNG