Preview

Fundamental and Applied Hydrophysics

Advanced search

Estimation of Coordinates of a Broadband Sound Source in the Ocean by a Combined Method Using Grazing Angles and Interference Structure at the Antenna Aperture

https://doi.org/10.59887/2073-6673.2025.18(2)-7

EDN: IHVFKX

Abstract

To estimate the range and depth of noisy sources, it is recommended to use vertical antennas and processing algorithms that take into account the properties of the waveguide. Below, it is shown that a vertical antenna can estimate the range and depth of a source in the deep sea over a sufficiently large range of distances and in the case when full information about the signal model is not used, but the information is processed simultaneously using two complementary algorithms that take into account the angles of arrival of beam signals in the vertical plane and the interference of sound pressure at the antenna aperture.

About the Authors

V. N. Drachenko
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilova Str., Moscow, 119991



G. N. Kuznetsov
Prokhorov General Physics Institute of the Russian Academy of Sciences
Russian Federation

38 Vavilova Str., Moscow, 119991



A. N. Mikhnyuk
Patrice Lumumba Peoples’ Friendship University of Russia
Russian Federation

6 Miklukho-Maklaya Str., Moscow, 117198



References

1. Baggeroer A, Kuperman W, Schmidt H. Matched field Processing: Source localization in correlated noise as an optimum parameter estimation problem. The Journal of the Acoustical Society of America. 1988;83:571–587. doi:10.1121/1.396151

2. Baggeroer A. Why did applications of MFP fail, or did we not understand how to apply MFP? Proceeding of the 1st International Conference and Exhibition on Underwater Acoustic. Corfu Island. Greece: Heraklion; 2013. p. 41–49.

3. Mashoshin AI. Underwater acoustics problems solving with using matched field processing. Fundamental and Applied Hydrophysics. 2017;10(1):37–48. doi:10.7868/S2073667317010051 (In Russ.).

4. Sazontov AG, Malekhanov AI. Matched field signal processing in underwater sound channels (review). Acoustical Physics. 2015;61(2):213–230. doi:10.1134/s1063771015020128

5. Kovalenko VV. Problematic issues of implementation of the method of matched with the field of the expected signal processing in hydroacoustics. Hydroacoustics. 2023;53(1):39–60 (In Russ.).

6. Mikhnyuk AN. Determination of the source coordinates using signal processing algorithms matched to the oceanic waveguide. Acoustical Physics. 2009;55(3):411–416. doi:10.1134/S106377100903018X

7. Drachenko VN, Karishnev NS, Kuznetsov GN, Mikhnyuk AN. Estimation of the source distance and depth in a multipath waveguide using a vector-scalar antenna. Physics of Wave Phenomena. 2014;22(4):1–12. https://doi.org/10.3103/S1541308X14040141

8. Belov AI, Kuznetsov GN. Methods and results of acoustic calibration of shallow sea local zones. Fundamental and Applied Hydrophysics. 2015;8(1):68–78 (In Russ.).

9. Kovalenko VV, Seleznev IA. operational oceanography for the benefit of acoustic underwater surveillance. Hydroacoustics. 2023;53(1):89–107 (In Russ.).

10. Kovalenko VV, Rodionov AA, Vankevich RE. Methodical base of operational oceanography systems creation in underwater surveillance tasks application. Fundamental and Applied Hydrophysics. 2021;14(3):4–19. doi:10.7868/S2073667321030011 (In Russ.).

11. Kuznetsov GN, Stepanov AN. Vector-scalar fields of multipole hydroacoustic sources equivalent to noise emissions of marine objects. M.: Publishing house «Buki-Vedi»; 2022. 304 p. (In Russ.).

12. Kakalov VA. Study of the possibility of determining target coordinates based on estimates of the parameters of the spatio-temporal structure of a multi-beam signal of a hydroacoustic noise direction-finding system [dissertation]. Central Research Institute «Morphizpribor»; 1973. (In Russ.).

13. Borodin VV. Potential accuracy of determining the position of a source in a waveguide. Voprosy sudostroeniya. Seria Akustika. 1983;16:44–52. (In Russ.).

14. Kuznetsov GN. Explanatory note on the R&D project “Sangar”. Sukhumi: Hydrophysical Institute of SMEs; 1979. 171 p. (In Russ.).

15. Urick RJ. Principles of Underwater Sound. McGraw–Hill: Book Company; 1975. 445 p.

16. Kuznetsov GN, Shchekin IE. Avtorskoe svidetel’stvo № 183384 SSSR. Prioritet IZO ot 01.12.1983 g.

17. Kuznetsov GN, Kenigsberger GV, Kolinko VG. Avtorskoe svidetel’stvo № 286264 SSSR. Prioritet IZO ot 16.06.1987 g.

18. Volkova AA, Konson AD. Spatial selectivity of vertically extended linear antenna in underwater sound channel. Hydroacoustics. 2023;54(2):80–89. (In Russ.).

19. Konson AD, Volkova AA. Localization of the horizon of a broadband source by a vertically extended linear antenna. Hydroacoustics. 2023;56(4):19–28. (In Russ.).

20. Yang Q, Yang K. Sound source depth estimation based on multipath time delay in deep water. Acta Acustica. 2018;104(2):363–368. doi:10.3813/AAA.919178

21. Ran C, Kunde Y, Yuanliang M, et al. Passive broadband source localization based on a Riemannian distance with a short vertical array in the deep ocean. The Journal of the Acoustical Society of America. 2019;145: EL567–EL573. doi:10.1121/1.5111971

22. Belov AI, Kuznetsov GN. Characteristics of normal waves exited by vertical arrays in shallow sea. Physics of Wave Phenomena. 2006;14(3):66–74.

23. Kuznetsov GN, Alekseev VI, Glebova GM. Positioning of horizontal-vertically developed multielement arrays and vector-scalar modules. Physics of Wave Phenomena. 2001;9(4):235–241.

24. Gitelson VS, Glebova GM, Kuznetsov GN. Determination of parameters of correlated signals using the Prony method. Acoustical Physics. 1988;34(4):170–172. (In Russ.).

25. Konson AD, editor. Information hydroacoustics. Methods of information support by hydroacoustic means. St. Petersburg, Publishing House of St. Petersburg State Technical University “LETI”; 2023. 367 p. (In Russ.).

26. Aksenov SP. Verification of a computational program in the mode WKB approximation for shallow and deep seas. Reports of the XVII school-seminar named after academician L.M. Brekhovskikh “Acousticocean”. Moscow: IORAS; 2020. p. 364–370. doi:10.29006/978-5-9901449-5-8-59. (In Russ.).

27. Aksenov SP, Kuznetsov GN. Determination of interference invariants in a deep-water waveguide by amplitude and phase methods. Physics of Wave Phenomena. 2021;29(1):81–87. doi:10.3103/S1541308X21010015


Review

For citations:


Drachenko V.N., Kuznetsov G.N., Mikhnyuk A.N. Estimation of Coordinates of a Broadband Sound Source in the Ocean by a Combined Method Using Grazing Angles and Interference Structure at the Antenna Aperture. Fundamental and Applied Hydrophysics. 2025;18(2):96-110. (In Russ.) https://doi.org/10.59887/2073-6673.2025.18(2)-7. EDN: IHVFKX

Views: 11


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)