Preview

Фундаментальная и прикладная гидрофизика

Расширенный поиск

Численное моделирование динамики плавучей полиэтиленовой пленки в поле поверхностных волн

https://doi.org/10.59887/2073-6673.2025.18(2)-5

Аннотация

Развитие физических основ дистанционной диагностики областей пластикового загрязнения водоемов приобрело в настоящее время высокую актуальность в связи с ростом антропогенного загрязнения Мирового океана. Значительный вклад в такое загрязнение связан с полиэтиленовыми (ПЭ-) пленками, которые приводят к изменчивости сигнала радиолокационного рассеяния при зондировании морской поверхности, что может быть использовано для диагностики пластикового мусора. ПЭ-пленки при этом часто находятся в приповерхностных слоях воды, а не плавают на поверхности, несмотря на то, что их плотность обычно меньше, чем плотность воды. В работе проведено численное моделирование динамики плавучей ПЭ-пленки в поле поверхностных волн. В качестве инструмента численного моделирования использовалось программное обеспечение с открытым исходным кодом «OpenFOAM». Обнаружено, что всплывающая в отсутствие волн пленка может притапливаться, всплывать или находиться в равновесии на определенной глубине при наличии волн. Обнаруженный эффект указывает на возникновение дополнительной средней силы в осциллирующем поле волн, которая направлена против сил плавучести и зависит от крутизны волны и глубины начального расположения пленки.

Об авторах

Г. Е. Хазанов
Институт прикладной физики им. А.В. Гапонова-Грехова РАН
Россия

Хазанов Григорий Ефимович, научный сотрудник, кандидат физико-математических наук

603950, г. Н. Новгород, ул. Ульянова, д. 46

Scopus AuthorID: 57325095100



С. А. Ермаков
Институт прикладной физики им. А.В. Гапонова-Грехова РАН; Волжский государственный университет водного транспорта
Россия

Ермаков Станислав Александрович, заведующий отделом, старший научный сотрудник,
доктор физико-математических наук

603950, г. Н. Новгород, ул. Нестерова, 5а

603950, г. Н. Новгород, ул. Нестерова, 5а



Список литературы

1. Chubarenko I, Esiukova E, Khatmullina L, et al. From macro to micro, from patchy to uniform: Analyzing plastic contamination along and across a sandy tide-less coast. Marine Pollution Bulletin. 2020;156:111198. doi:10.1016/j.marpolbul.2020.111198

2. Cózar A, Echevarría F, González-Gordillo JI, et al. Plastic debris in the open ocean. Proceedings of the National Academy of Sciences. 2014;111(28):10239–10244. doi:10.1073/pnas.1314705111

3. Andrady AL. Microplastics in the marine environment. Marine Pollution Bulletin. 2011;62(8):1596–1605. doi:10.1016/j.marpolbul.2011.05.030

4. Suaria G, Cappa P, Perold V, Aliani S, Ryan PG. Abundance and composition of small floating plastics in the eastern and southern sectors of the Atlantic Ocean. Marine Pollution Bulletin. 2023;193:115109. doi:10.1016/j.marpolbul.2023.115109

5. do Sul JAI, Costa MF. The present and future of microplastic pollution in the marine environment. Environmental Pollution. 2014;185:352–364.

6. Gall SC, Thompson RC. The impact of debris on marine life. Marine Pollution Bulletin. 2015;92(1–2):170–179. doi:10.1016/j.marpolbul.2014.12.041

7. Crawford C, Quinn B. Microplastics, standardisation and spatial distribution. In: Microplastic Pollutants. Elsevier; 2017. p. 101–130. doi:10.1016/B978-0-12-809406-8.00005-0

8. Gallitelli M, Simpson MD, Marino A, et al. Monitoring of plastic islands in river environment using Sentinel‑1 SAR data. Remote Sensing. 2022;14(18):4473. doi:10.3390/rs14184473

9. Hu C. Remote detection of marine debris using satellite observations in the visible and near infrared spectral range: Challenges and potentials. Remote Sensing of Environment. 2021;259:112414. doi:10.1016/j.rse.2021.112414

10. Davaasuren N, Marino A, Boardman C, et al. Detecting microplastics pollution in world oceans using SAR remote sensing. In: IGARSS2018–2018 IEEE International Geoscience and Remote Sensing Symposium. 2018;938–941. doi:10.1109/IGARSS.2018.8517281

11. Evans MC, Ruf CS. Toward the detection and imaging of ocean microplastics with a spaceborne radar. IEEE Transactions on Geoscience and Remote Sensing. 2021; PP:1–9. doi:10.1109/tgrs.2021.3081691

12. Sun Y, Bakker T, Ruf C, Pan Y. Effects of microplastics and surfactants on surface roughness of water waves. Scientific Reports. 2023;13(1):1978. doi:10.1038/s41598-023-29088-9

13. Motofumi A, Masakazu K, Yoshifumi A. Applicability of SAR to marine debris surveillance after the Great East Japan Earthquake. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2014;7(5).

14. Simpson MD, Marino A, de Maagt P, et al. Investigating the backscatter of marine plastic litter using a C- and X-band ground radar during a measurement campaign in Deltares. Remote Sensing. 2023;15(6):1654. doi:10.3390/rs15061654

15. Kukulka T, Proskurowski G, Moret-Ferguson S, Meyer DW, Law KL. The effect of wind mixing on the vertical distribution of buoyant plastic debris. Geophysical Research Letters. 2012;39(7):1–6. doi:10.1029/2012GL051116

16. Forsberg PL, Sous D, Stocchino A, Chemin R. Behaviour of plastic litter in nearshore waters: First insights from wind and wave laboratory experiments. Marine Pollution Bulletin. 2020;153:111023. doi:10.1016/j.marpolbul.2020.111023

17. Cózar A, Morales-Caselles C, Aliani S, et al. Marine litter windrows: a strategic target to understand and manage the ocean plastic pollution. Frontiers in Marine Science. 2021;8:571796. doi:10.3389/fmars.2021.571796

18. Kooi M, van Nes EH, Scheffer M, Koelmans AA. Ups and downs in the ocean: Effects of biofouling on vertical transport of microplastics. Environmental Science & Technology. 2017;51(13):7963–7971. doi:10.1021/acs.est.6b04702

19. Hron J, Turek S. A monolithic FEM/multigrid solver for ALE formulation of fluid-structure interaction with application in biomechanics. In: Bungartz H-J, Schäfer M, editors. Fluid-Structure Interaction: Modelling, Simulation, Optimisation. LNCSE; 2006. p. 1–16. doi:10.1007/3-540-34596-5_7

20. Brown SA, Xie N, Hann MR, Greaves DM. Investigation of wave-driven hydroelastic interactions using numerical and physical modelling approaches. Applied Ocean Research. 2022;129:103363. doi:10.1016/j.apor.2022.103363

21. Tuković Ž, Karac A, Cardiff P, Jasak H. OpenFOAM finite volume solver for fluid-solid interaction. Transactions of FAMENA. 2018;42(3):113–128. doi:10.21278/TOF.42301

22. Cardiff P, Karač A, De Haeger P, et al. An open-source finite volume toolbox for solid mechanics and fluid-solid-interaction simulations. arXiv preprint arXiv:1808.10736. 2018.

23. Donea J, Huerta A, Ponthot JP, Rodríguez-Ferran A. Arbitrary Lagrangian-Eulerian methods. In: Wiley, editor. The Encyclopedia of Computational Mechanics. Vol 1. Ch. 14. 2004;413–437. doi:10.1002/0470091355.ECM009

24. Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J. Space-Time finite element computation of complex fluid-structure interactions. International Journal for Numerical Methods in Fluids. 2010;64(11):1201–1218. doi:10.1002/fld.2221

25. Thomas P, Lombard CK. Geometric conservation law and its application to flow computations on moving grids. AIAA Journal. 1979;17(7):1030–1037. doi:10.2514/3.61273

26. Jasak H. Error analysis and estimation for the finite volume method with applications to fluid flows. PhD thesis, Imperial College of Science, Technology and Medicine; 1996.

27. Higuera P, Lara JL, Losada IJ. Realistic wave generation and active wave absorption for Navier-Stokes models: Application to OpenFOAM®. Coastal Engineering. 2013;71:102–118. doi:10.1016/j.coastaleng.2012.07.002

28. Dean RG, Dalrymple RB. Water wave mechanics for engineers and scientists. Singapore: World Scientific; 1991.

29. Ciarlet PG. Mathematical elasticity. Volume I: Three-dimensional elasticity. Studies in Mathematics and its Applications. Vol 20. Amsterdam: Elsevier Science Publishers B.V.; 1988. doi:10.1007/BF00046568

30. Widlund O. Iterative substructuring methods: algorithms and theory for elliptic problems in the plane. In: First International Symposium on Domain Decomposition Methods for Partial Differential Equations. SI-AM; 1988. p. 113–128.

31. Tuković Ž, Jasak H. A moving mesh finite volume interface tracking method for surface tension dominant interfacial fluid flow. Computers & Fluids. 2012;55:70–84. doi:10.1016/j.compfluid.2011.11.003

32. Landau LD, Lifshitz EM. Mechanics. Course of Theoretical Physics. Vol 1. 1974;224 p.

33. Gaponov AV, Miller MA. Potential wells for charged particles in a high-frequency electromagnetic field. Journal of Experimental and Theoretical Physics. 1958;7(1):168.


Рецензия

Для цитирования:


Хазанов Г.Е., Ермаков С.А. Численное моделирование динамики плавучей полиэтиленовой пленки в поле поверхностных волн. Фундаментальная и прикладная гидрофизика. 2025;18(2):68-82. https://doi.org/10.59887/2073-6673.2025.18(2)-5

For citation:


Khazanov G.E., Ermakov S.A. Numerical Modeling of a Floating Polyethylene Film Dynamics in the Field of Surface Waves. Fundamental and Applied Hydrophysics. 2025;18(2):68-82. (In Russ.) https://doi.org/10.59887/2073-6673.2025.18(2)-5

Просмотров: 9


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)