Preview

Фундаментальная и прикладная гидрофизика

Расширенный поиск

Изменчивость характеристик полярной фронтальной зоны в северо-западной части Баренцева моря по данным контактных наблюдений с 2017 по 2023 гг.

https://doi.org/10.59887/2073-6673.2025.18(2)-3

EDN: FSMDHC

Аннотация

Приведены результаты океанографических наблюдений, выполненных с борта НИС «Дальние Зеленцы» на разрезе Кольский меридиан в 2017–2023 гг. Основной акцент сделан на оценках характеристик фронтальных разделов в области северной части Полярной фронтальной зоны Баренцева моря в осенний, зимний и весенний периоды. Для оценки аномалий ледовитости использовались данные Мирового центра данных по морскому льду (AARI WDC Sea-Ice). Выполнено сравнение результатов наблюдений в северной части разреза вблизи прикромочной ледовой зоны с характеристиками температуры и солености из глобальных океанологических баз. Для сравнения привлекались продукты MERCATOR PSY4QV3R1, CMEMS GLORYS12v1 и TOPAZ5. На всех разрезах были обнаружены высокоградиентные зоны, выраженные в поле температуры и солености, на разном расстоянии от кромки ледового поля. Было подтверждено, что в западном районе Баренцева моря отмечается устойчивый тренд к сокращению площади ледового покрова последние три десятилетия. Показано, что самый северный из фронтальных разделов Полярной фронтальной зоны Баренцева моря на оси разреза Кольский меридиан находилcя на расстоянии от 48 до 290 км от кромки ледовых полей, градиенты температуры варьировались от 0,10 до 0,20 °C/км, солености — от 0,012 до 0,025 епс/км, ширина фронтальной зоны не превышала 55 км. Наилучшее соответствие результатам измерений отмечено с данными продукта MERCATOR PSY4QV3R1

Об авторах

Т. М. Максимовская
Институт океанологии им. П.П. Ширшова РАН
Россия

117997, г. Москва, Нахимовский проспект, д. 36



А. В. Зимин
Институт океанологии им. П.П. Ширшова РАН
Россия

117997, г. Москва, Нахимовский проспект, д. 36



О. А. Атаджанова
Институт океанологии им. П.П. Ширшова РАН
Россия

117997, г. Москва, Нахимовский проспект, д. 36



А. А. Коник
Институт океанологии им. П.П. Ширшова РАН
Россия

117997, г. Москва, Нахимовский проспект, д. 36



Е. С. Егорова
Мурманский морской биологический институт РАН
Россия

183032, г. Мурманск, ул. Владимирская, д. 17



Д. В. Моисеев
Мурманский морской биологический институт РАН
Россия

183032, г. Мурманск, ул. Владимирская, д. 17



Список литературы

1. Loeng H, Ozhigin V, Ardlandsvik B. Water fluxes through the Barents Sea. ICES Journal of Marine Science. 1997;54(3):310–7. doi:10.1006/jmsc.1996.0165 EDN: LEMVTH

2. Lisitsyn AP. Barents Sea System. Moscow: GEOS; 2021. (In Russian).

3. Oziel L, Sirven J, Gascard JC. The Barents Sea frontal zones and water masses variability (1980–2011). Ocean Science. 2016;12:169–84. doi:10.5194/os‑12-169-2016 EDN: WTVWPP

4. Ingvaldsen RB, Loeng H, Asplin L. Variability in the Atlantic inflow to the Barents Sea based on a one-year time series from moored current meters. Continental Shelf Research. 2002;22:505–19. doi:10.1016/S0278-4343(01)00070-X EDN: LRWMBV

5. Skagseth O. Recirculation of Atlantic Water in the western Barents Sea. Geophysical Research Letters. 2008;35: L11606. doi:10.1029/2008GL033785 EDN: SPTBDX

6. Lundesgaard Ø, Sundfjord A, Lind S, Nilsen F, Renner AHH. Import of Atlantic Water and sea ice controls the ocean environment in the northern Barents Sea. Ocean Science. 2022;18:1389–418. doi:10.5194/os‑18-1389-2022 EDN: LLLIPU

7. IPCC. Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC; 2023. p. 35–115. doi:10.59327/IPCC/AR6-9789291691647

8. Kwok R, Cunningham GF, Wensnahan M, Rigor I, Zwally HJ, YiD. Thinning and volume loss of the Arctic Ocean Sea ice cover: 2003–2008. Journal of Geophysical Research: Oceans. 2009;114(C7): C07005. doi:10.1029/2009JC005312 EDN: BUZEJS

9. Schweiger A, Lindsay R, Zhang J, Steele M, Stern H, Kwok R. Uncertainty in modeled Arctic Sea ice volume. Journal of Geophysical Research: Oceans. 2011;116(C00D06). doi:10.1029/2011JC007084 EDN: KAKDPU

10. Kostianoy AG, Nihoul JCJ., Rodionov VB. Physical oceanography of the frontal zones in sub-Arctic seas. 1st ed. Amsterdam: Elsevier Oceanography Series; 2004. Vol. 71.

11. Kolås EH, Baumann TM, Skogseth R, et al. Western Barents Sea circulation and hydrography, past and present. ESS Open Archive. 2023. doi:10.22541/essoar.169203078.81082540/v1

12. Kolås EH, Fer I., Baumann TM. The Polar Front in the northwestern Barents Sea: Structure, variability, and mixing. Ocean Science. 2024;20(6):895–916. doi:10.5194/os‑20-895-2024 EDN: KAKDPU

13. Polyakov IV, Pnyushkov A, Carmack E. Stability of the Arctic halocline: A new indicator of Arctic climate change. Environmental Research Letters. 2018;13(12):125008. doi:10.1088/1748-9326/aaec1e EDN: RVYNMM

14. Årthun M, Eldevik T, Viste E, Drange H, Furevik T, Johnson HL, Keenlyside N.S. Skillful prediction of northern climate provided by the ocean. Nature Communications. 2017;8:15875. doi:10.1038/ncomms15875 EDN: YIBKEK

15. Strong C, Foster D, Cherkaev E, Eisenman I, Golden K. On the definition of marginal ice zone width. Journal of Atmospheric and Oceanic Technology. 2017;37(7):1565–84. doi:10.1175/JTECH-D‑16-0171.1

16. Kostianoy AG, Nihoul JCJ. Frontal zones in the Norwegian, Greenland, Barents and Bering Seas. In: NATO Science for Peace and Security Series C: Environmental Security. 2009. p. 171–90. doi:10.1007/978-1-4020-9460-6_13

17. Bekryaev RV, Polyakov IV, Alexeev VA. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. Journal of Climate. 2010;23(14):3888–906. doi:10.1175/2010JCLI3297.1 EDN: OHMENJ

18. Serreze MC., Barry RG. Processes and impacts of Arctic amplification: A research synthesis. Global Planet Change. 2011;77(1–2):85–96. doi:10.1016/j.gloplacha.2011.03.004 EDN: OLOJLP

19. Davy R, Chen L, Hanna E. Arctic amplification metrics. International Journal of Climatology. 2018;38(12):4384–94. doi:10.1002/joc.5675 EDN: KNEOBE

20. Latonin MM., Bashmachnikov IL., Bobylev LP. The Arctic amplification phenomenon and its driving mechanisms. Fundamental and Applied Hydrophysics. 2020;13(3):3–19. doi:10.7868/S2073667320030016 EDN: ZIPPIB

21. Skagseth Ø, Eldevik T, Årthun M, Asbjørnsen H, Lien VS, Smedsrud LH. Reduced efficiency of the Barents Sea cooling machine. Nature Climate Change. 2020;10(7):661–6. doi:10.1038/s41558-020-0772-6 EDN: NJTZCO

22. Sweeney AJ., Fu Q, Po-Chedley S, Wang H, Wang M. Internal variability increased Arctic amplification during 1980– 2022. Geophysical Research Letters. 2023;50. doi:10.1029/2023GL106060 EDN: LGBUCF

23. Trofimov AG. Arctic and Barents Sea ice extent variability and trends in 1979–2022. Trudy VNIRO. 2024;197:101–20. (In Russian). doi:10.36038/2307-3497-2024-197-101-120 EDN: RUYLHJ

24. Screen JA, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature. 2010;464:1334–7. doi:10.1038/nature09051

25. Lind S, Ingvaldsen RB, Furevik T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nature Climate Change. 2018;8(7):634–9. doi:10.1038/s41558-018-0205-y EDN: YJCOGD

26. Årthun M, Onarheim IH, Dörr J, Eldevik T. The seasonal and regional transition to an ice-free Arctic. Geophysical Research Letters. 2021;48(1). doi:10.1029/2020GL090825 EDN: WSSXAN

27. Ivanov VV, Tuzov FK. Formation of dense water dome over the Central Bank under conditions of reduced ice cover in the Barents Sea. Deep Sea Research Part I: Oceanographic Research Papers. 2021;175:103590 EDN: PJKYRT doi:10.1016/j.dsr.2021.103590

28. Sumkina AA, Ivanov VV, Kivva KK. Heat budget of the Barents Sea surface in winter. Lomonosov Geographical Journal. 2024;(3):123–34. (In Russian). doi:10.55959/MSU0579-9414.5.79.3.10 EDN: VLIIYL

29. Serreze MC, Stroeve J. Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philosophical Transactions of the Royal Society A. 2015;373:20140159. doi:10.1098/rsta.2014.0159 EDN: UPZPGN

30. Stroeve J, Notz D. Changing state of Arctic sea ice across all seasons. Environmental Research Letters. 2018;13:103001. doi:10.1088/1748-9326/aade56 EDN: LWDJZL

31. Lis NA., Egorova ES. Climatic variability of the ice extent of the Barents Sea and its individual areas. Arctic and Antarctic Research. 2022;68(3):234–47. (In Russian). doi:10.30758/0555-2648-2022-68-3-234-247 EDN: GLBVPA

32. Våge S, Basedow SL, Tande KS, Zhou M. Physical structure of the Barents Sea Polar Front near Storbanken in August 2007. Journal of Marine Systems. 2014;130:256–62. doi:10.1016/j.jmarsys.2011.11.019

33. Fer I, Baumann TM, Elliott F, Kolås EH. Ocean microstructure measurements using an MSS profiler during the Nansen Legacy cruise, GOS2020113, October 2020 [Dataset]. Norwegian Marine Data Centre, 2023.

34. Karsakov AL, Trofimov AG, Antsiferov MYu, et al. 120 years of oceanographic observations at the Kola meridian section. Murmansk: PINRO im. N.M. Knipovicha; 2022. (In Russian). EDN: NOCWAT

35. Ozhigin VK, Trofimov AG, Ivshin VA. The Eastern Basin Water and Currents in the Barents Sea. ICES Document CM 2000/L:14. 19 pp. EDN: YWCURA

36. Polyakov IV, Alekseev GV, Timokhov LA, Bhatt US, Colony RL, Simmons HL, Walsh D, et al. Variability of the Intermediate Atlantic Water of the Arctic Ocean over the last 100 years. Journal of Climate. 2004;17:4485–95. doi: 10.1175/1520-0442(2004)017. EDN: LINLZV

37. Loeng H. Features of the physical oceanographic conditions of the Barents Sea. In: Pro Mare Symposium on Polar Ecology; Sakshaug E, Hopkins CCE, Britsland NA, Eds. Polar Research. Trondheim, Norway: 1991. Vol. 10, pp. S18.

38. Karsakov AL. Oceanographic investigations along the “Kola Meridian” section in the Barents Sea in 1900–2008. Murmansk: PINRO Press; 2009. 139 pp. (In Russian).

39. Boitsov VD., Karsakov AL., Trofimov AG. Atlantic water temperature and climate in the Barents Sea, 2000–2009. ICES Journal of Marine Science. 2012;69:833–40. doi:10.1093/icesjms/fss075 EDN: RGBVJZ

40. Prokopchuk IP, Trofimov AG. Interannual dynamics of zooplankton in the Kola Section of the Barents Sea during the recent warming period. ICES Journal of Marine Science. 2019;76(Supplement_1): i10–i12. doi: 10.1093/icesjms/fsz206 EDN: UOETEB

41. Moiseev DV, Zaporozhtsev IF, Maksimovskaya TM, Dukhno GN. Identification of the position of frontal zones on the surface of the Barents Sea according to contact and remote monitoring data (2008–2018). Arctic: Ecology and Economy. 2019;2(34):48–63. (In Russian). doi:10.25283/2223-4594-2019-2-48-63 EDN: JHJGVM

42. Gudkovich ZM, Kirillov AA, Kovalev EG, et al. Fundamentals of the methodology for long-term ice forecasts for Arctic seas. Leningrad: Gidrometeoizdat; 1972. 348 pp. (In Russian).

43. Mironov EY. Ice conditions in the Greenland and Barents Seas and their long-term forecast. St. Petersburg: AANII; 2004. 319 pp. (In Russian).

44. Afanasyeva EV, Alekseeva TA, Sokolova JV, Demchev DM, Chufarova MS, Bychenkov YuD, Devyataev OS. AARI methodology for sea ice chart composition. Russian Arctic. 2019;7:5–20. doi:10.24411/2658-4255-2019-10071 EDN: YIIBNO

45. Zhichkin AP. Peculiarities of interannual and seasonal variations of the Barents Sea ice coverage anomalies. Russian Meteorology and Hydrology. 2015;40:319–26. doi:10.3103/S1068373915050052 EDN: UGFDFF

46. Spichkin VA. Definition of the major anomaly criterion. In: Studies of ice conditions in the Arctic seas, calculation and forecasting methods: Proceedings of the AANII. 1987. Vol. 402, pp. 15–19. (In Russian).

47. Matishov GG., Golubev VA., Zhichkin AP. Temperature anomalies in the Barents Sea during summer periods of 2001–2005. Doklady Earth Sciences. 2007;412:82–4. doi:10.1134/S1028334X07010187 EDN: MWRBHZ

48. Matishov G, et al. Climate and cyclic hydrobiological changes of the Barents Sea from the twentieth to twenty-first centuries. Polar Biology. 2012;35:1773–90. doi:10.1007/s00300-012-1237-9 EDN: PVITCJ

49. Fedorov KN. The physical nature and structure of oceanic fronts. New York, NY, USA: Springer-Verlag; 1986. 333 pp. doi:10.1007/978-1-4684-6343-9

50. Journel AG, Huijbregts C. Mining geostatistics. San Diego, CA, USA: Academic Press; 1978. 600 pp.

51. Dukhovskoy DS, et al. Skill metrics for evaluation and comparison of sea ice models. Journal of Geophysical Research: Oceans. 2015;120:5910–31. doi:10.1002/2015JC010989 EDN: VEUXNX

52. Hiester HR, et al. A topological approach for quantitative comparisons of ocean model fields to satellite ocean color data. Methods in Oceanography. 2016;13:1–14. doi:10.1016/j.mio.2016.01.001

53. Thomson RE, Emery WJ. Data analysis methods in physical oceanography. Newnes; 2014. 638 pp. doi:10.1016/C2010-0-66362-0 EDN: VFCGLJ

54. Efstathiou E, Eldevik T, Årthun M, Lind S. Spatial patterns, mechanisms, and predictability of Barents Sea ice change. Journal of Climate. 2022;35:2961–73. doi:10.1175/JCLI-D‑21–0044.1 EDN: BPVZBU

55. Årthun M, Eldevik T, Smedsrud L, Skagseth Ø, Ingvaldsen R. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. Journal of Climate. 2012;25:4736–43. doi:10.1175/JCLI-D‑11-00466.1 EDN: RPHDXJ

56. Herbaut C, Houssais MN, Close S, Blaizot AC. Two wind-driven modes of winter sea ice variability in the Barents Sea. Deep-Sea Research Part I: Oceanographic Research Papers. 2015;106:97–115. doi:10.1016/j.dsr.2015.10.005 EDN: VEZTNH


Рецензия

Для цитирования:


Максимовская Т.М., Зимин А.В., Атаджанова О.А., Коник А.А., Егорова Е.С., Моисеев Д.В. Изменчивость характеристик полярной фронтальной зоны в северо-западной части Баренцева моря по данным контактных наблюдений с 2017 по 2023 гг. Фундаментальная и прикладная гидрофизика. 2025;18(2):41-57. https://doi.org/10.59887/2073-6673.2025.18(2)-3. EDN: FSMDHC

For citation:


Maksimovskaya T.M., Zimin A.V., Atadzhanova O.A., Konik A.A., Egorova E.S., Moiseev D.V. Variability of the Polar Front Characteristics in the Northwestern Barents Sea Based on In-Situ Observations from 2017 to 2023. Fundamental and Applied Hydrophysics. 2025;18(2):41-57. https://doi.org/10.59887/2073-6673.2025.18(2)-3. EDN: FSMDHC

Просмотров: 7


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)