Spatiotemporal Structure and Variability of Thermohaline Parameters in the Intermediate Water Layer North of the Severnaya Zemlya Archipelago
https://doi.org/10.59887/2073-6673.2025.18(2)-2
EDN: EEVAUM
Abstract
Time series of water temperature and conductivity obtained over three years of continuous measurements at seven autonomous moored stations north of the Severnaya Zemlya archipelago located in the Arctic Basin of the Arctic Ocean were analyzed in combination with numerical modeling to investigate the spatiotemporal variability of temperature and salinity in the intermediate layer of Atlantic-origin waters. These waters propagate along the Eurasian continental slope within the Arctic Boundary Current (ABC). Within 85 km of the shelf edge, three distinct branches of Atlantic Water (AW) transport were identified, each characterized by a unique origin history of origin that shapes the variability of its thermohaline properties. The most energetic mode of temporal variability at all stations is associated with oscillations with a period of approximately 12 months. The amplitude of these oscillations decreases with increasing distance from the shelf edge, while their phase differs among the AW branches. Numerical modeling indicates that, in the study region, the typical phase–distance relationship observed in the western Nansen Basin is disrupted by the large-scale input of cold, freshened water through the St. Anna Trough.
Keywords
About the Authors
V. V. IvanovRussian Federation
1 Leninskie Gory, Moscow, 119991
A. V. Danshina
Russian Federation
38 Bering Str., St. Petersburg, 199397
A. V. Smirnov
Russian Federation
38 Bering Str., St. Petersburg, 199397
References
1. Timofeev VT. Water masses of the Arctic Basin. L.: Gidrometeoizdat; 1960. 190 p. (in Russian).
2. GEBCO: The GEBCO_2023 Grid. Available from: https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_2023/ (accessed 28 Apr 2024).
3. Nikiforov EG, Shpajxer AO. Formation regularities of large-scale fluctuations of hydrological regime of the Arctic Ocean. L.: Gidrometeoizdat; 1980. 270 p. (in Russian).
4. Aagaard K. A synthesis of Arctic Ocean circulation. Rapports et Procès-Verbaux des Réunions du Conseil International pour l’Exploration de la Mer. 1989;188:11–22.
5. Rudels B, Anderson LG, Jones E-P. Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. Journal of Geophysical Research: Oceans. 1996;101(C4):8807–8821. doi:10.1029/96JC00143
6. Rudels B, et al. Circulation and transformation of Atlantic water in the Eurasian Basin and the contribution of the Fram Strait inflow branch to the Arctic Ocean heat budget. Progress in Oceanography. 2015;132:128–152. doi:10.1016/j.pocean.2014.04.003
7. Schauer U, Loeng H, Rudels B, et al. Atlantic water flow through the Barents and Kara Seas. Deep-Sea Research Part I: Oceanographic Research Papers. 2002;49(12):2281–2298. doi:10.1016/S0967-0637(02)00125-5
8. Ivanov VV, Frolov IE, Filchuk KV. Transformation of Atlantic Water in the north-eastern Barents Sea in winter. Arctic and Antarctic Research. 2020;66(3):246–266. doi:10.30758/0555-2648-2020-66-3-246-266
9. Schauer U, Rudels B, Jones EP, et al. Confluence and redistribution of Atlantic Water in the Nansen, Amundsen and Makarov basins. Annales Geophysicae. 2002;20(2):257–273. doi:10.5194/angeo‑20-257-2002
10. Ivanov VV, Aksenov EO. Atlantic water transformation in the eastern Nansen basin: observations and modeling. Arctic and Antarctic Research. 2013;1(95):72–87 (In Russian).
11. Quadfasel D, Sy A, Wells D, et al. A warming of the Arctic. Nature. 1991;359:385. doi:10.1038/350385a0
12. Alekseev GV, Bulatov LV, Zakharov VF, Ivanov VV. Intrusion of unusually warm Atlantic Water in the Arctic Ocean. Reports of Russian Academy of Sciences. 1997;356(3):401–403. (In Russian).
13. Polyakov I, Beszczynska A, Carmack EC, et al. One more step towards a warmer Arctic. Geophysical Research Letters. 2005;32: L17605. doi:10.1029/2005GL023740
14. Polyakov IV, et al. Observational program tracks Arctic Ocean transition to a warmer state. Eos, Transactions, American Geophysical Union. 2007;88(40):398–399. doi:10.1029/2007EO400002
15. Ivanov VV, Polyakov IV, Dmitrenko IA, et al. Seasonal variability in Atlantic Water off Spitsbergen. Deep-Sea Research Part I: Oceanographic Research Papers. 2009;56(1):1–14. doi:10.1016/j.dsr.2008.07.013
16. Ivanov V, Alexeev V, Koldunov NV, et al. Arctic Ocean heat impact on regional ice decay: a suggested positive feedback. Journal of Physical Oceanography. 2016;46(5):1437–1456. doi:10.1175/JPO-D‑15-0144.1
17. Walczowski W, Piechura J. New evidence of warming propagating toward the Arctic Ocean. Geophysical Research Letters. 2006;33(12): L12601. doi:10.1029/2006GL025872
18. Holliday NP, Hughes SL, Bacon S, et al. Reversal of the 1960s to 1990s freshening trend in the northeast North Atlantic and Nordic Seas. Geophysical Research Letters. 2008;35(3): L03614. doi:10.1029/2007GL032675
19. Polyakov IV, Alexeev VA, Ashik IM, et al. NOWCAST: Fate of early‑2000’s Arctic warm water pulse. Bulletin of the American Meteorological Society. 2011;92(5):561–565. doi:10.1175/2010BAMS292I.1
20. Dmitrenko IA, Polyakov IV, Kirillov SA, et al. Seasonal variability of Atlantic water on the continental slope of the Laptev Sea during 2002–2004. Earth and Planetary Science Letters. 2006;244:735–743. doi:10.1016/j.epsl.2006.01.067
21. Dmitrenko I, Kirillov S, Ivanov V, et al. Seasonal modification of the Arctic Ocean intermediate water layer off the eastern Laptev Sea continental shelf break. Journal of Geophysical Research: Oceans. 2009;114: C06010. doi:10.1029/2008JC005229
22. Ivanov VV, Repina IA. The effect of seasonal variability of Atlantic water on the Arctic Sea ice cover. Izvestiya, Atmospheric and Oceanic Physics. 2018;54(1):65–72. doi:10.1134/S0001433818010061
23. Randelhof J, Ivanov V, et al. Seasonality of the physical and biogeochemical hydrography in the inflow to the Arctic Ocean through Fram Strait. Frontiers in Marine Science. 2018;5. doi:10.3389/fmars.2018.00224
24. Baumann TM, Polyakov IV, Pnyushkov AV, et al. On the seasonal cycles observed at the continental slope of the eastern Eurasian Basin of the Arctic Ocean. Journal of Physical Oceanography. 2018;48:1451–1470. doi:10.1175/JPO-D‑17-0163.1
25. Renner AHH, Sundfjord A, Janout MA, et al. Variability and redistribution of heat in the Atlantic Water boundary current north of Svalbard. Journal of Geophysical Research: Oceans. 2018;123(9):6373–6391. doi:10.1029/2018JC013814
26. Ruiz-Castillo E, Janout M, Hölemann J, et al. Structure and seasonal variability of the Arctic Boundary Current north of Severnaya Zemlya. Journal of Geophysical Research: Oceans. 2023;128(1). doi:10.1029/2022JC018677
27. Lique C, Steele M. Where can we find a seasonal cycle of the Atlantic water temperature within the Arctic Basin? Journal of Geophysical Research: Oceans. 2012;117: C03026. doi:10.1029/2011JC007612
28. Ivanov V, Maslov P, Aksenov Ye, et al. Shelf-basin exchange in the Laptev Sea in the warming climate: a model study. Geophysical & Astrophysical Fluid Dynamics. 2015;109:254–280. doi:10.1080/03091929.2015.1025776
29. Dmitrenko IA, Rudels B, Kirillov SA, et al. Atlantic water flow into the Arctic Ocean through the St. Anna Trough in the northern Kara Sea. Journal of Geophysical Research: Oceans. 2015;120(7):5158–5178. doi:10.1002/2015JC010804
30. Woodgate RA, Aagaard K, Muench RD, et al. The Arctic Ocean boundary current along the Eurasian slope and the adjacent Lomonosov Ridge: Water mass properties, transports and transformations from moored instruments. Deep-Sea Research Part I: Oceanographic Research Papers. 2001;48:1757–1792. doi:10.1016/S0967-0637(00)00091-1
31. NEMO Community Ocean Model. Available from: https://www.nemo-ocean.eu/. (Accessed April 17, 2023).
32. Sea-Bird Scientific. Available from: https://www.seabird.com/ (Accessed August 28, 2024).
33. Zenodo: NEMO shared references. NEMO ocean engine. Version v3.6-patch. Available from: https://zenodo.org/records/3248739 (Accessed March 25, 2023). doi:10.5281/zenodo.3248739
34. LIM. The Louvain-la-Neuve sea Ice Model. Available from: https://cmc.ipsl.fr/images/publications/scientific_notes/lim3_book.pdf (Accessed March 25, 2023).
35. Copernicus Marine Service: Ocean products. Global Ocean Physics Reanalysis. Available from: https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_PHY_001_030/services (Accessed December 1, 2022).
36. ECMWF: ECMWF Reanalysis v5 (ERA5). Available from: https://www.ecmwf.int/en/forecasts/dataset/ecmwfreanalysis-v5 (Accessed September 17, 2023).
37. Egbert DG, Erofeeva SY. Efficient inverse modelling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology. 2002;19(2):182–204. doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
38. World Ocean Database and World Ocean Atlas Series. WOA18.DATA. Available from: https://www.ncei.noaa.gov/data/oceans/woa/WOA18/DATA/ (Accessed February 8, 2021).
39. Emery WJ, Thomson RE. Data Analysis Methods in Physical Oceanography. New York: Elsevier; 2004. 637 p.
40. University of Bremen. Sea Ice Concentration. AMSR-E/AMSR2. Available from: https://seaice.uni-bremen.de/seaice-concentration/amsre-amsr2 (Accessed February 8, 2023).
41. Pnyushkov AV, Polyakov IV, Alekseev GV, et al. A steady regime of volume and heat transports in the eastern Arctic Ocean in the early 21st century. Frontiers in Marine Science. 2021;8:705608. doi:10.3389/fmars.2021.705608
42. Marchuk GI, Dymnikov VP, Zalesnyj VB. Mathematical models in geophysical hydrodynamics and numerical methods for their implementation. L.: Gidrometeoizdat; 1987. 295 p. (In Russian).
43. Osadchiev A, Viting K, Frey D, et al. Structure and circulation of Atlantic water masses in the St. Anna Trough in the Kara Sea. Frontiers in Marine Science. 2022;9:915674. doi:10.3389/fmars.2022.915674
44. Rudels B. Arctic Ocean circulation and variability — advection and external forcing encounter constraints and local processes. Ocean Science. 2012;8:261–286. doi:10.5194/os‑8-261-2012
Review
For citations:
Ivanov V.V., Danshina A.V., Smirnov A.V. Spatiotemporal Structure and Variability of Thermohaline Parameters in the Intermediate Water Layer North of the Severnaya Zemlya Archipelago. Fundamental and Applied Hydrophysics. 2025;18(2):19-40. https://doi.org/10.59887/2073-6673.2025.18(2)-2. EDN: EEVAUM