Comparison of Turbulence Parameterization Methods in an Upper Ocean Layer Model
https://doi.org/10.59887/2073-6673.2025.18(2)-1
EDN: AJTHIU
Abstract
When modeling processes in the ocean, the issue of describing turbulent exchange inevitably arises. Today, there are numerous methods for parameterizing turbulence in the upper layer of the ocean. The most common and established closure methods for hydrodynamic equations are considered by introducing turbulent kinetic energy and turbulent mixing length, and a formulation of the ocean general circulation model is provided. A series of experiments were conducted, each using different combinations of equations for turbulence parameterization, which also utilized data from The Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 Reanalysis and HYCOM + NCODA Global 1/12° Reanalysis to describe the advective components of scalar quantities. The comparison of model data was made with observational data obtained from automatic marine stations of the Pacific Marine Environmental Laboratory. It is shown that using more complex forms of the turbulent kinetic energy equation, as well as additional equations for calculating the turbulent mixing length, does not lead to unambiguous improvements in results. It is also shown that the same combinations of equations can yield opposite results in terms of quality.
Keywords
About the Authors
A. A. BukharevRussian Federation
79 Voronezhskaya Str., St Petersburg, 192007
K. Yu. Bulgakov
Russian Federation
36 Nakhimovsky Prosp., Moscow, 117997
References
1. Ďurán IB, Geleyn J, Váňa F, Schmidli J, Brožková R. A turbulence scheme with two prognostic turbulence energies. Journal of the Atmospheric Sciences. 2018;75(10):3381–3402. doi:10.1175/JAS-D‑18-0026.1
2. Li Q, Reichl BG, Fox-Kemper B, et al. Comparing ocean surface boundary vertical mixing schemes including Langmuir turbulence. Earth System Dynamics. 2019;11(9):3545–3592. doi:10.1029/2019MS001810
3. Danabasoglu G, Large WG, Tribbia JT, Gent PR, Briegleb BP, McWilliams JC. Diurnal coupling in the tropical oceans of CCSM3. Journal of Climate. 2006;19(11):2347–2365. doi:10.1175/JCLI3739.1
4. Bulgakov KY, Molchanov MS. Testing of the turbulent mixing scheme based on similarity theory in the Baltic Sea model. Fundamental and Applied Hydrophysics. 2011;4(4):71–79. (In Russian).
5. Kraus EB. A one-dimensional model of the seasonal thermocline. Part II: The general theory and its consequences. Tellus Series A: Dynamic Meteorology and Oceanography. 1967;19(1):98–106. doi:10.3402/tellusa.v19i1.9753
6. Pacanovsky RC, Philander G. Parameterization of vertical mixing in numerical models of the tropical ocean. Journal of Physical Oceanography. 1981;11(12):1443–1451. doi:10.1175/1520-0485(1981)011<1443: povmin>2.0.co;2
7. Large WG, McWilliams JC, Doney SC. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics. 1994;32(4):363–403. doi:10.1029/94RG01872
8. Chalikov D. Similarity theory and parameterization of mixing in the upper ocean. Environmental Fluid Mechanics. 2004;4(4):385–414. doi:10.1007/s10652-005-5489-6
9. Gutjahr O, Brüggemann N, Haak H, Jungclaus JH, Putrasahan DA, Lohmann K, von Storch JS. Comparison of ocean vertical mixing schemes in the Max Planck Institute Earth System Model (MPI-ESM1.2). Geoscientific Model Development. 2021;14(5):2317–2349. doi:10.5194/gmd‑14-2317-2021
10. Pandey LK, Dwivedi S. Comparing the performance of turbulent kinetic energy and K-profile parameterization vertical schemes over the tropical Indian Ocean. Marine Geodesy. 2020;44(1):42–69. doi:10.1080/01490419.2020.1835758
11. Wang W, Shen X, Huang W. A comparison of boundary-layer characteristics simulated using different parameterization schemes. Boundary-Layer Meteorology. 2016;161(2):375–403. doi:10.1007/s10546-016-0175-4
12. Bennis AC, Mármol M, Lewandowski R, Chacón Rebollo T, Brossier F. A comparison of three turbulence models with an application to the West Pacific Warm Pool. arXiv preprint arXiv: math-ph/0701059. 2007.
13. Blanke B, Delecluse P. Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. Journal of Physical Oceanography. 1993;23(7):1363–1388. doi:10.1175/1520-0485(1993)023<1363: VOTTAO>2.0.CO;2
14. Rodi W. Examples of calculation methods for flow and mixing in stratified fluids. Journal of Geophysical Research: Oceans. 1987;92(C5):5305–5328. doi:10.1029/JC092iC05p05305
15. Umlauf L, Burchard H. A generic length-scale equation for geophysical turbulence models. Journal of Marine Research. 2003;61(2):235–265. doi:10.1357/002224003322005087
16. Mellor GL, Yamada T. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics. 1982;20(4):851–875. doi:10.1029/RG020i004p00851
17. Mellor GL, Yamada T. A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences. 1974;31(7):1791–1806. doi:10.1175/1520-0469(1974)031<1791: AHOTCF>2.0.CO;2
18. Ohya Y. Wind-tunnel study of atmospheric stable boundary layers over a rough surface. Boundary-Layer Meteorology. 2001;98(1):57–82. doi:10.1023/A:1018767829067
19. Esau I, Byrkjedal Q. Application of large-eddy simulation database to optimization of first closures for neutral and stably stratified boundary layers. Boundary-Layer Meteorology. 2007;125(2):207–225. doi:10.1007/978-0-387-74321-9_5
20. Beare RJ, et al. An intercomparison of large eddy simulations of the stable boundary layer. Boundary-Layer Meteorology. 2006;118(3):247–272. doi:10.1007/s10546-004-2820-6
21. Jean-Michel L, et al. The Copernicus, global 1/12° oceanic and sea ice GLORYS12 reanalysis. Frontiers in Earth Science. 2021;9:698876. doi:10.3389/feart.2021.698876
22. Metzger EJ, Helber RW, Hogan PJ, Posey PG, Thoppil PG, Townsend TL, Wallcraft AJ, et al. Global Ocean forecast system 3.1 validation test. URL: https://apps.dtic.mil/sti/pdfs/AD1034517.pdf. 2017. (Accessed July 6, 2022).
23. Cronin MF, Meing C, Sabine CL, Ichikawa H, Tomita H. Surface mooring network in the Kuroshio extension. IEEE Systems Journal. 2008;2(3):424–430. doi:10.1109/jsyst.2008.925982
24. McPhaden MJ, Busalacchi AJ, Cheney R, et al. The tropical ocean–global atmosphere observing system: A decade of progress. Journal of Geophysical Research: Oceans. 1998;103(C14):14169–14240. doi:10.1029/97JC02906
25. McPhaden MJ, Busalacchi AJ, Anderson DLT. A TOGA retrospective. Oceanography. 2010;23(1):86–103. doi:10.5670/oceanog.2010.26
Review
For citations:
Bukharev A.A., Bulgakov K.Yu. Comparison of Turbulence Parameterization Methods in an Upper Ocean Layer Model. Fundamental and Applied Hydrophysics. 2025;18(2):8-18. (In Russ.) https://doi.org/10.59887/2073-6673.2025.18(2)-1. EDN: AJTHIU