Bio-optical properties of the middle Volga at 2023
https://doi.org/10.59887/2073-6673.2025.18(1)-7
Abstract
The presented paper opens a series of articles devoted to studies of the bio-optical characteristics of the Volga waters in the context of creating regional bio-optical models accounting the transformation of the water optical properties from north to south. The preliminary results of field measurements carried out in 2023 at the middle Volga are presented. Measurements were performed with high spatial resolution — 3 m. The spatial distributions and variations of various hydro-optical and hydrological characteristics, including water brightness spectra and the content of dissolved and suspended substances that determine its color (chlorophyll a, suspended solids), data on water temperature, electrical conductivity, salinity, dissolved oxygen content, flow velocity and direction, were investigated at different spatial scales. The influence of different Volga tributaries was assessed, including the seasonal variability of bio-optical characteristics in the areas of the confluence of the Volga and Oka, and the Volga and Kama. Cross-correlation estimates were given. The obtained results expand an actual picture of the studied water area and will be used in the analysis of satellite data and the development of bio-optical models.
Keywords
About the Authors
A. A. MolkovRussian Federation
Scopus AuthorID: 55377777800, WoS ResearcherID: А-3623-2014
23 Gagarin Avenue, Nizhny Novgorod 603022
46 Ulyanova Str., Nizhny Novgorod, 603950
5 Nesterova Str., Nizhny Novgorod, 603950
I. A. Kapustin
Russian Federation
Scopus AuthorID: 25629629000, WoS ResearcherID: A-3593-2014
23 Gagarin Avenue, Nizhny Novgorod 603022
46 Ulyanova Str., Nizhny Novgorod, 603950
5 Nesterova Str., Nizhny Novgorod, 603950
A. V. Ermoshkin
Russian Federation
Scopus AuthorID: 54410480500, WоS ResearcherID: D-5271-2015
23 Gagarin Avenue, Nizhny Novgorod 603022
46 Ulyanova Str., Nizhny Novgorod, 603950
G. V. Leshchev
Russian Federation
Scopus AuthorID: 57213165519
23 Gagarin Avenue, Nizhny Novgorod 603022
46 Ulyanova Str., Nizhny Novgorod, 603950
D. V. Dobrokhotova
Russian Federation
Scopus AuthorID: 57219659995, WoS ResearcherID: AAA-7981-2022
23 Gagarin Avenue, Nizhny Novgorod 603022
46 Ulyanova Str., Nizhny Novgorod, 603950
E. S. Koltsova
Russian Federation
WoS ResearcherID: KPA-51862024
23 Gagarin Avenue, Nizhny Novgorod 603022
B. V. Konovalov
Russian Federation
23 Gagarin Avenue, Nizhny Novgorod 603022
36 Nakhimovsky Prosp., Moscow, 117997
A. N. Drozdova
Russian Federation
Scopus AuthorID: 57189681902, WoS ResearcherID: F-8435-2011
23 Gagarin Avenue, Nizhny Novgorod 603022
36 Nakhimovsky Prosp., Moscow, 117997
N. A. Bogatov
Russian Federation
46 Ulyanova Str., Nizhny Novgorod, 603950
A. M. Chushnyakova
Russian Federation
23 Gagarin Avenue, Nizhny Novgorod 603022
36 Nakhimovsky Prosp., Moscow, 117997
A. G. Kirillov
Russian Federation
46 Ulyanova Str., Nizhny Novgorod, 603950
References
1. Global Environment Monitoring System for Freshwater. URL: https://ceowatermandate.org/resources/globalenvironment-monitoring-system-for-freshwater-2019/ (Accessed: 12.11.2023)
2. USGS Water Resources Mission Area. URL: https://www.usgs.gov/mission-areas/water-resources (Accessed: 12.11.2023)
3. Water Framework Directive. URL: https://environment.ec.europa.eu/topics/water/water-framework-directive_en (Accessed: 12.11.2023)
4. The United Nations Decade of Ocean Science for Sustainable Development. URL: https://oceandecade.org/ru/news/ocean-decade-unveils-new-set-of-endorsed-actions-on-all-continents/ (Accessed: 12.11.2023).
5. Ferreira J.G., Vale C., Soares C.V., Salas F., Stacey P.E., Bricker S.B., Silva M.C., Marques J.C. Monitoring of coastal and transitional waters under the E.U. water framework directive. Environmental Monitoring and Assessment. 2007;135:195– 216. doi:10.1007/s10661-007-9643-0
6. Ansper A., Alikas K. Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes. Remote Sensing. 2019;11(1): 64. doi:10.3390/rs11010064
7. Adjovu G.E., Stephen H., James D., Ahmad S. Overview of the application of remote sensing in effective monitoring of water quality parameters. Remote Sensing. 2023;15(7):1938. doi:10.3390/rs15071938
8. National Project “Ecology” (2019–2024). URL: https://xn-80aapampemcchfmo7a3c9ehj.xn—p1ai/projects/ekologiya/ (Accessed: 12.11.2023)
9. Federal project “Water of Russia”. URL: https://voda.org.ru/ (Accessed: 12.11.2023)
10. State Program of the Russian Federation “Environmental Protection”. URL: http://government.ru/rugovclassifier/874/events/ (Accessed: 12.11.2023).
11. Soomets T., Uudeberg K., Jakovels D., Zagars M., Reinart A., Brauns A., Kutser T. Comparison of Lake Optical Water Types Derived from Sentinel-2 and Sentinel-3. Remote Sensing. 2019;11(23):2883. doi:10.3390/rs11232883
12. Pahlevan N., Smith B., Schalles J., Binding C., Cao Z., Ma R., Alikas K., Kangro K., Gurlin D., Hà N., Matsushita B., Moses W., Greb S., Lehmann M.K., Ondrusek M., Oppelt N., Stumpf R. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sensing of Environment. 2020;240:111604. doi:10.1016/j.rse.2019.111604
13. Butorin N.V. About transparency and turbidity of water of the Gorki Reservoir. Trudy Instituta Biologii Vodoxranilishh. 1959;2(5):204–211 (in Russian).
14. Monakov A.V. (ed.) Kuibyshev Reservoir. Leningrag: Nauka; 1983. 213 p. (in Russian).
15. Shitikov V.K., Vykhristyuk L.A., Pautova V.N., Zinchenko T.D. Comprehensive ecological zoning of the Kuibyshev reservoir. Water Resources. 2007;34(4):450–458. doi:10.1134/S0097807807040100
16. Butorin N.V. Hydrological processes and dynamics of water masses in the Volga Cascade Reservoirs. Leningrag, Nauka, 1969. 322 p. (in Russian).
17. Mineeva N.M. Plankton primary production in the Volga River reservoirs / Ed. by A.I. Kopylov. Yaroslavl: Print House, 2009. 279 p. (in Russian).
18. Korneva L.G. Modern state of phytoplankton of the Upper Volga reservoirs. In: Semerny V.P. (ed.). Biological Resources, their conservation and use. Yaroslavl: Yaroslavl State University; 1999. 81–91 (in Russian).
19. Selezneva K.V., Selezneva A.V., Seleznev V.A. Influence of the mass development of cyanobacteria on the formation of the water quality of the Kuibyshev reservoir (problem and solutions). Izvestiya of Samara Scientific Center of The Russian Academy of Sciences. 2023;25(5):164–174 (in Russian). doi:10.37313/1990-5378-2023-25-5-164-174
20. Mingazova N.M., Nabeeva E.G., Cheban E. Yu., Pavlova L.R., Yakovleva E., Putintsev R., Mac Quiroa Ch.A., Landi S., Shavalieva A. Hydrochemical characteristics of the Kuibyshev Reservoir (based on the materials of the floating university expedition). Problemy Ekologii Volzhskogo Basseina: Proceedings of the 6th Scientific Conference, N. Novgorod, November 24–25, 2021. Iss. 4. Volga State University of Water Transport; 2021. 35 p.
21. Edelstein K.К. Dynamics of the water mass of the river part of the Gorki Reservoir / Dynamics of water masses of reservoirs. Leningrag: Izdvo AS USSR; 1965. P. 39–44 (in Russian).
22. Palmer S.C., Pelevin V.V., Goncharenko I.V., Kovács A., Zlinszky A., Présing M., Horváth H., Nicolás-Perea V., Balzter H., Tóth V. Ultraviolet Fluorescence Lidar (UFL) as a Measurement Tool for Water Quality Parameters in Turbid Lake Conditions. Remote Sensing. 2013;5:4405–4422. doi:10.3390/rs5094405
23. Konovalov B.V., Kravchishina M.D., Belyaev N.A., Novigatsky A.N. Determination of the concentration of mineral particles and suspended organic substance based on their spectral absorption. Oceanology. 2014;54(5):660–667. doi:10.1134/S0001437014040067
24. Mueller J.L., Bidigare R.R., Trees C., Balch W.M., Dore J., Drapeau D.T., Karl D., Van Heukelem L., Perl J. Ocean Optics Protocols For Satellite Ocean Color Sensor Validation, Revision 5, Volume 5: Biogeochemical and Bio-Optical Measurements and Data Analysis Protocols. Greenbelt, MD. Goddard Space Flight Space Center. 2003;5–24. doi:10.25607/OBP-67
25. Kessler N., Armoza-Zvuloni R., Wang S., Basu S., Weber P.K., Stuart R.K., Shaked Y. Selective collection of iron-rich dust particles by natural Trichodesmium colonies. The ISME Journal. 2020;14:91–103. doi:10.1038/s41396-019-0505-x
26. Rabinowitz E. Photosynthesis. V. 1. / translated from English by N.D. Leonov, ed. and with a foreword by A.A. Nichiporovich. Moscow: Izd. inostr. Lit.; 1951. 648 p. (in Russian).
27. Molkov A., Kapustin I., Grechushnikova M., Dobrokhotova D., Leshchev G., Vodeneeva E., Sharagina E., Kolesnikov A. Investigation of Water Dynamics Nearby Hydroelectric Power Plant of the Gorky Reservoir onWater Environment: Case Study of 2022. Water. 2023;15:3070. doi:10.3390/w15173070
28. Nemirovskaya I.A. How polluted is the Volga? Priroda. 2011;4:36–44 (in Russian).
29. Hansen C.H., Burian S.J., Dennison P.E., Williams G.P. Spatiotemporal variability of lake water quality in the context of remote sensing models. Remote Sensing. 2017;9:409. doi:10.3390/rs9050409
30. Molkov A., Fedorov S., Pelevin V. Toward Atmospheric Correction Algorithms for Sentinel-3/OLCI Images of Productive Waters. Remote Sensing. 2022;14:3663. doi:10.3390/rs14153663
Review
For citations:
Molkov A.A., Kapustin I.A., Ermoshkin A.V., Leshchev G.V., Dobrokhotova D.V., Koltsova E.S., Konovalov B.V., Drozdova A.N., Bogatov N.A., Chushnyakova A.M., Kirillov A.G. Bio-optical properties of the middle Volga at 2023. Fundamental and Applied Hydrophysics. 2025;18(1):78-91. (In Russ.) https://doi.org/10.59887/2073-6673.2025.18(1)-7