Preview

Fundamental and Applied Hydrophysics

Advanced search

Chlorophyll “a” concentration and light absorption by colored dissolved organic matter in the Black Sea in winter (2018) and summer (2020)

https://doi.org/10.59887/2073-6673.2025.18(1)-5

Abstract

The study was based on the results obtained during the expeditions of the R/V “Professor Vodyanitsky” — from November 24 to December 10, 2018 (PV105), from June 4 to 24, 2020 (PV113). New data of light absorption by colored dissolved organic matter (CDOM in the winter and summer were presented. In winter, in the sea surface layer, the light absorption coefficients of CDOM (aCDOM(438)) (0.10 ± 0.015 m–1), exceeded summer values (0.062 ± 0.025 m–1). There were no seasonal differences in the mean spectral slope (SCDOM) values (0.019 nm–1). However, the variability of SCDOM values in summer is noted in a wider range (0.015 to 0.026 nm–1) than in winter (0.017–0.021 nm–1). The highest SCDOM values are resulted from photodestruction of CDOM in the sea surface layer in summer. An inverse relationship has been revealed between aCDOM(438) and SCDOM, which is described by a power law. Seasonal differences in the content of chlorophyll a (TChl-a) in the upper mixed layer (1.1 ± 0.43 mg m–3 in winter and 0.32 ± 0.11 mg m–3 in summer) and in the type of the TChl-a vertical distribution, due to the water hydrological structure, were shown: in winter — uniform distribution within the upper mixed layer, which was comparable to or exceeded the photosynthesis zone, in summer — the presence of a layer of deep chlorophyll a maximum near the bottom of the euphotic zone. Relationship between aCDOM(438) and SCDOM was not revealed for both seasons.

About the Authors

T. Ya. Churilova
A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS
Russian Federation

WoS ResearcherID: O-8437–2016, Scopus AuthorID: 6603622802

2 Nakhimov Ave., Sevastopol 299011 



E. Yu. Skorokhod
A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS
Russian Federation

WoS ResearcherID: A-6831–2019, Scopus AuthorID; 57215009764

2 Nakhimov Ave., Sevastopol 299011 



T. V. Efimova
A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS
Russian Federation

WoS ResearcherID: X-1355–2019, Scopus AuthorID: 57194423783

2 Nakhimov Ave., Sevastopol 299011 



N. A. Moiseeva
A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS
Russian Federation

WoS ResearcherID: AAH-2819–2019, Scopus AuthorID: 57194431032

2 Nakhimov Ave., Sevastopol 299011 



References

1. Mobley C.D. The Oceanic Optics Book. Dartmouth: International Ocean Colour Coordinating Group, 2022. 924 p.

2. Kopelevich O.V. et al. Application of SeaWiFS data for studying variability of bio-optical characteristics in the Barents, Black and Caspian Seas. Deep Sea Research Part II: Topical Studies in Oceanography. 2004;51(10–11):1063–1091. doi:10.1016/j.dsr2.2003.10.009

3. Nelson J.R., Guarda S. Particulate and dissolved spectral absorption on the continental shelf of the southeastern United States. Journal of Geophysical Research. 1995;100(C5):8715–8732. doi:10.1029/95JC00222

4. Bricaud A. et al. Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. Journal of Geophysical Research: Oceans. 1998;103(C13):31033– 31044. doi: ff10.1029/98JC02712f

5. Bricaud A. et al. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization. Journal of Geophysical Research. 1995;100(C7):13321–13332. doi:10.1029/95JC00463

6. Hoepffner N., Sathyendranath S. Effect of pigment composition on absorption properties of phytoplankton. Marine Ecology­Progress Series. 1991;73:11–23.

7. Hooker S.B. et al. SeaWiFS Postlaunch Technical Report Series V. 11, SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3. NASA Technical Memorandum. Greenbelt, Maryland: NASA Goddard Space Flight Center, 2000. 49 p.

8. Groom S. et al. Satellite Ocean Colour: Current Status and Future Perspective. Frontiers Marine Science. 2019;6:485. doi:10.3389/fmars.2019.00485

9. Kirk J.T.O. Light and Photosynthesis in Aquatic Ecosystems. 3rd. Cambridge: University Press, 2011. 665 p.

10. Falkowski P.G., Raven J.A. Aquatic Photosynthesis. 2nd edn. Oxford: Princeton University Press, 2007. 484 p.

11. Ferreira A., Garcia V.M.T., Garcia C.A.E. Light absorption by phytoplankton, non-algal particles and dissolved organic matter at the Patagonia shelf-break in spring and summer. Deep Sea Research Part I: Oceanographic Research Papers. 2009;56(12):2162–2174. doi:10.1016/j.dsr.2009.08.002

12. Tilstone G.H. et al. High concentrations of mycosporine‐like amino acids and colored dissolved organic matter in the sea surface microlayer off the Iberian Peninsula. Limnology and Oceanography. 2010;55(5):1835–1850. doi:10.4319/lo.2010.55.5.1835

13. Matsuoka A. et al. Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: relationship with hydrographic characteristics. Biogeosciences. 2012;9(3):925–940. doi:10.5194/bg-9-925-2012

14. Nelson N.B., Siegel D.A. The Global Distribution and Dynamics of Chromophoric Dissolved Organic Matter. Annual Review of Marine Science. 2013;5(1):447–476. doi:10.1146/annurev-marine-120710-100751

15. D’Sa E.J. et al. Absorption and fluorescence properties of chromophoric dissolved organic matter of the eastern Bering Sea in the summer with special reference to the influence of a cold pool. Biogeosciences. 2014;11(12):3225–3244. doi:10.5194/bg-11-3225-2014

16. Churilova T. et al. Annual variability in light absorption by particles and colored dissolved organic matter in the Crimean coastal waters (the Black Sea). Proceedings of SPIE: 23th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. 2017;10466:245. doi:10.1117/12.2288339

17. Efimova T.V. et al. Spectral bio-optical properties of the Black Sea coastal waters (near Sevastopol) in summer 2020–2021. Proceedings of SPIE: 28th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. 2022;12341:123414U. doi:10.1117/12.2645084

18. Yushmanova A. et al. Inter-Annual Variability of the Seawater Light Absorption in Surface Layer of the Northeastern Black Sea in Connection with Hydrometeorological Factors. Journal of Marine Science and Engineering. 2019;7(9):326.

19. Pogosyan S.I. et al. Absorption spectroscopy of microalgae, cyanobacteria, and dissolved organic matter: Measurements in an integrating sphere cavity / Ed. by D.C. Wash. Oceanology. 2009;49:866–871.

20. Mannino A. et al. Measurement protocol of absorption by Chromophoric Dissolved Organic Matter (CDOM) and other dissolved materials. IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation, 2019.

21. Morel A., Berthon J. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote‐sensing applications. Limnology and Oceanography. 1989;34(8):545–1562. doi:10.4319/lo.1989.34.8.1545

22. Vedernikov V.I. Primary production and chlorophyll in the Black Sea in summer and fall,” in Struktura i Produktsionnye Kharakteristiki Planktonnykh Soobshchestv / Ed.by M.E. Vinogradov and M.V. Flint. Sbornikh Nauchnykh Rabot. Moscow: Nauka, 1989. 65–83 (in Russian).

23. Jeffrey S.W., Humphrey G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen. 1975;167(2):191–194.

24. Helms J.R. et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography. 2008;53(3):955–969. doi:10.4319/lo.2008.53.3.0955

25. Vähätalo A.V., Wetzel R.G. Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months–years) exposures. Marine Chemistry. 2004;89:313–326. doi:10.1016/j.marchem.2004.03.010

26. Churilova T. Ya. et al. Spectral Approach to Assessment of Phytoplankton Photosynthesis Rate in the Black Sea Based on Satellite Information: Methodological Aspects of the Regional Model Development. Journal of Siberian Federal University. Biology. 2016;9(4):367–384 (in Russian).

27. Schwarz J. et al. Two models for absorption by coloured dissolved organic matter (CDOM). Oceanologia. 2002;44(2):209– 241.

28. Ivanov V.A., Belokopytov V.N. Oceanography of the Black Sea. Sevastopol: NAS of Ukraine, Marine Hydrophysical Institute, 2011. 209 p. (in Russian).

29. Finenko Z., Churilova T., Lee R. Dynamics of the Vertical Distributions of Chlorophyll and Phytoplankton Biomass in the Black Sea. Oceanology. 2005;45.Suppl. 1:112–126.

30. Geider R.J., MacIntyre H.L., Kana T.M. Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and chlorophyll a: carbon ratio to light, nutrient limitation and temperature. Marine Ecology Progress Series. 1997;148:187–200. doi:10.3354/meps148187

31. MacIntyre H.L. et al. Photoacclimation of Photosynthesis Irradiance Response Curves and Photosynthetic Pigments in Microalgae and Cyanobacteria. Journal of Phycology. 2002;38(1):17–38. doi:10.0000/135184797337543

32. Babin M. et al. Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems. Deep Sea Research Part I: Oceanographic Research Papers. 1996;43(8):1241–1272. doi:10.1016/0967-0637(96)00058-1

33. Finenko Z.Z. et al. Phytoplankton carbon to chlorophyll a ratio: response to light, temperature and nutrient limitation. Marine Ecological Journal. 2003;2(2):40–64 (in Russian).

34. Falkowski P.G., Owens T.G. Light — Shade Adaptation: Two Strategies In Marine Phytoplankton. Plant Physiology. 1980;66(4):592–595. doi:10.1104/pp.66.4.592

35. Finenko Z.Z., Churilova T. Ya., Lee R.I. Vertical distribution of chlorophyll and fluorescence in the Black Sea. Marine Ecological Journal. 2005;4(1):15–45 (in Russian).

36. Churilova T. et al. Phytoplankton light absorption in the deep chlorophyll maximum layer of the Black Sea. European Journal of Remote Sensing. 2019;52:123–136. doi:10.1080/22797254.2018.1533389

37. Twardowski M.S., Donaghay P.L. Photobleaching of aquatic dissolved materials: Absorption removal, spectral alteration, and their interrelationship. Journal of Geophysical Research: Oceans. 2002;107(C8). doi:10.1029/1999JC000281

38. Suslin V.V., Korolev S.N., Kucheryaviy A.A., Churilova T.Y., Krivenko O.V. Photosynthetically available radiation on surface of the Black Sea based on Ocean Color data. Proceedings of SPIE — The International Society for Optical Engineering, Tomsk, 2015. P. 96800T.

39. Nelson N.B., Siegel D.A. Chromophoric DOM in the Open Ocean. Biogeochemistry of Marine Dissolved Organic Matter. Elsevier. 2002, 547–578.

40. Churilova T. et al. Parameterization of Light Absorption of Phytoplankton, Non-Algal Particles and Coloured Dissolved Organic Matter in the Atlantic Region of the Southern Ocean (Austral Summer of 2020). Remote Sensing. Seawater Bio­Optical Characteristics from Satellite Ocean Color Data II. 2023;15(3):634. doi:10.3390/rs15030634

41. Efimova T. et al. Light Absorption by Optically Active Components in the Arctic Region (August 2020) and the Possibility of Application to Satellite Products for Water Quality Assessment. Remote Sensing. 2023;15(17):4346.

42. Matsuoka A. et al. Seasonal variability in the light absorption properties of western Arctic waters: Parameterization of the individual components of absorption for ocean color applications. Journal of Geophysical Research. Oceans. 2011;116(2). doi:10.1029/2009JC005594

43. Ferreira A., Ciotti Á.M., Garcia C.A.E. Bio-optical characterization of the northern Antarctic Peninsula waters: Absorption budget and insights on particulate backscattering. Deep Sea Research Part II: Topical Studies in Oceanography. 2018;149:138–149. doi:10.1016/j.dsr2.2017.09.007

44. Bricaud A. et al. Light absorption properties and absorption budget of Southeast Pacific waters. Journal of Geophysical Research. 2010;115(C8): C08009. doi:10.1029/2009JC005517

45. Babin M., Stramski D., Ferrari G.M., Claustre H., Bricaud A., Obolensky G., Hoepffner N. Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research. Oceans. 2003;108(C7). doi:10.1029/2001JC000882

46. Gonçalves­Araujo R., Röttgers R., Haraguchi L., Brandini F.P. Hydrography-Driven Variability of Optically Active Constituents of Water in the South Brazilian Bight: Biogeochemical Implications. Frontiers Marine Science. 2019;6. doi:10.3389/fmars.2019.00716

47. Carder K.L., Steward R. Marine humic and fulvic acids: Their effects on remote sensing of ocean chlorophyll. Limnology and Oceanography. 1989;34:68–81. doi:10.4319/lo.1989.34.1.0068

48. Vantrepotte V. et al. CDOM-DOC relationship in contrasted coastal waters: implication for DOC retrieval from ocean color remote sensing observation. Optics Express. 2015;23(1):33. doi:10.1364/OE.23.000033

49. Danhiez F.P. et al. Optical properties of chromophoric dissolved organic matter during a phytoplankton bloom. Implication for DOC estimates from CDOM absorption. Limnology and Oceanography. 2017;62(4):1409–1425. doi:10.1002/lno.10507

50. Churilova T. Ya. et al. Spectral Light Absorption Coefficient of Particles and Colored Dissolved Organic Matter in the Sea of Azov. Fundamental and Applied Hydrophysics. 2022;15(3):73–83. doi:10.59887/fpg/ex1p-9vtp-phu8 (in Russian).


Review

For citations:


Churilova T.Ya., Skorokhod E.Yu., Efimova T.V., Moiseeva N.A. Chlorophyll “a” concentration and light absorption by colored dissolved organic matter in the Black Sea in winter (2018) and summer (2020). Fundamental and Applied Hydrophysics. 2025;18(1):53-65. (In Russ.) https://doi.org/10.59887/2073-6673.2025.18(1)-5

Views: 71


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)