Preview

Fundamental and Applied Hydrophysics

Advanced search

Intra-day variability of vertical water structure and distributions walleye pollock eggs in the deep-sea canyons of Avacha Bay: A field experiment during the spawning period

https://doi.org/10.59887/2073-6673.2024.17(4)-6

Abstract

Tidal dynamics along the shelf break and continental slope of the Kamchatka Peninsula, adjacent to the Pacific Ocean, are a significant but underexplored factor influencing the hydrological variability. This variability affects the distribution of early life stages of the Eastern Kamchatka population of Walleye pollock, a key species for Russian fisheries. Its spawning occurs mainly in the deep-sea canyons of Avacha and Kronotsky Bays. This study aims to describe the methodology developed to investigate the impact of tidally driven hydrophysical processes on pollock egg distribution, with a focus on its application in the deep-sea canyons of Avacha Bay. Two experiments were conducted in the "Central" and "Northern" canyons during the peak of pollock spawning in April 2024, coinciding with the spring tide when tidal effect on the environment is maximized. The experimental methodology was based on frequent hydrological profiling and layer-by-layer sampling of ichthyoplankton, carried out over a day. The study identified a 50-meter amplitudes of vertical oscillation of the thermocline, located at 320–420 meter between warm and cold intermediate layers, with a distinct diurnal rhythm in the "Central" canyon and semidiurnal one in the "Northern" canyon. These results highlight the critical role of tidal dynamics in shaping hydrophysical variability, which in turn potentially affects pollock eggs vertical redistribution and development in the deep-sea canyons of Avacha Bay. 

About the Authors

A. A. Konik
Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

Konik, Aleksandr A., researcher, Cand. Sc. (Geogr.)

Scopus AuthorID: 57203864647, WoS ResearcherID: AAB-7195–2020

36 Nakhimovsky Prosp., Moscow, 117997



A. V. Zimin
Shirshov Institute of Oceanology, Russian Academy of Sciences; St. Petersburg State University
Russian Federation

Zimin, Aleksey A., chief scientific researcher, Dr. Sc. (Geogr.)

Scopus AuthorID: 55032301400, WoS ResearcherID: C-5885–2014

36 Nakhimovsky Prosp., Moscow, 117997

7–9 Universitetskaja Emb., St. Petersburg, 199034



O. A. Atadzhanova
Shirshov Institute of Oceanology, Russian Academy of Sciences; Marine Hydrophysical Institute
Russian Federation

Atadzhanova, Oksana A., senior researcher, Cand. Sc. (Geogr.)

Scopus AuthorID: 57188718743, WoS ResearcherID: R-7835-2018

36 Nakhimovsky Prosp., Moscow, 117997

2 Kapitanskaja Str., Sevastopol, 299011



E. I. Svergun
Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

Svergun, Egor I., researcher, Cand. Sc. (Geogr.)

Scopus AuthorID: 57195066881, WoS ResearcherID: AAC-7289-2020

36 Nakhimovsky Prosp., Moscow, 117997



D. A. Romanenkov
Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

Romanenkov, Dmitriy A., leading researcher, Cand. Sc. (Geogr.)

Scopus AuthorID: 6506855768, WoS ResearcherID: U-8280-2017

36 Nakhimovsky Prosp., Moscow, 117997



E. V. Sofina
Shirshov Institute of Oceanology, Russian Academy of Sciences; Russian State Hydrometeorological University
Russian Federation

Sofina, Ekaterina V., leading researcher, Cand. Sc. (Phys.-Math.)

Scopus AuthorID: 23111468200, WoS ResearcherID: E-3920-2014

36 Nakhimovsky Prosp., Moscow, 117997

79 Voronezhskaja Str., St. Petersburg, 192007



A. I. Varkentin
Shirshov Institute of Oceanology, Russian Academy of Sciences; Kamchatka branch of “Federal Research Institute of Fisheries and Oceanography” (“KamchatNIRO”)
Russian Federation

Varkentin, Alexandr I., leading researcher, Cand. Sc. (Bio.)

WoS ResearcherID: ADK-2588-2022

36 Nakhimovsky Prosp., Moscow, 117997

18 Naberezhnaja Str., Petropavlovsk-Kamchatsky, 683000



O. B. Tepnin
Shirshov Institute of Oceanology, Russian Academy of Sciences; Kamchatka branch of “Federal Research Institute of Fisheries and Oceanography” (“KamchatNIRO”)
Russian Federation

Tepnin, Oleg B., researcher

WoS ResearcherID: KIL-1378-2024

36 Nakhimovsky Prosp., Moscow, 117997

18 Naberezhnaja Str., Petropavlovsk-Kamchatsky, 683000



D. Ja. Saushkina
Shirshov Institute of Oceanology, Russian Academy of Sciences; Kamchatka branch of “Federal Research Institute of Fisheries and Oceanography” (“KamchatNIRO”)
Russian Federation

Saushkina, Darya Ya., senior specialist

Scopus AuthorID: 57219658866, WoS ResearcherID: AAY-8161-2021

36 Nakhimovsky Prosp., Moscow, 117997

18 Naberezhnaja Str., Petropavlovsk-Kamchatsky, 683000



References

1. Kolonchin K.V., Pavlova A.O., Betin O.I., Yanovskaya N.V. Walleye pollock as an object of Russian and world fishery. Trudy VNIRO. 2022;189:5–15. doi:10.36038/2307-3497-2022-189-5-15 (in Russian).

2. Antonov N.P. Biology and population dynamics of East Kamchatka pollock: Abstract of Cand. of Biological Sciences diss. Vladivostok: TINRO; 1991. 23 p. (in Russian).

3. Buslov A.V. Walleye pollock of the eastern Kamchatka coast: modern state of stock and recommendations for rational exploitation. Izvestiya TINRO. 2008;152:3–17. (in Russian).

4. Buslov A.V., Tepnin O.B. Conditions of spawning and embryogenesis of pollock Theragra chalcogramma (GADIDAE) in deep-water canyons of the Pacific coast of Kamchatka. Voprosy Ichthyologii. 2002;42(5):617–625 (in Russian).

5. Buslov A.V., Tepnin O.B., Dubinina A. Yu. Some features of spawn ecology and embryogenesis of the east Kamchatka walleye pollock. Izvestiya TINRO. 2004;138:282–298 (in Russian).

6. Tepnin O.B. Variability of hydrological conditions in the spawning grounds of East Kamchatka pollock (Gadus chalcogrammus) in 2012–2022. Issledovaniya Vodnyh Biologicheskih Resursov Kamchatki i Severo-Zapadnoj Chasti Tihogo Okeana. 2022;66:79–93. doi:10.15853/2072-8212.2022.66.79–93 (in Russian).

7. Shanks A.L. Surface slicks associated with tidally forced internal waves may transport pelagic larvae of benthic invertebrates and fishes shoreward. Marine Ecology Progress Series 13. 1983;311–315. doi:10.3354/meps013311

8. Guida V.G., Valentine P.C., Gallea L.B. Semidiurnal Temperature Changes Caused by Tidal Front Movements in the Warm Season in Seabed Habitats on the Georges Bank Northern Margin and Their Ecological Implications. Public Library of Science One. 2013;8(2): e55273. doi:10.1371/journal.pone.0055273

9. Garwood J.C., Musgrave R.C., Lucas A.J. Life in internal waves. Oceanography 2020;33(3):38–49. doi:10.5670/oceanog.2020.313

10. Phelan P.J., Steinbeck J., Walter R.K. Influence of internal bores on larval fish abundance and community composition. Regional Studies in Marine Science. 2018;20:1–12. doi:10.1016/j.rsma.2018.03.010

11. Svergun E.I., Zimin A.V., Konik A.A. Short-period internal waves in the Pacific area of the Kamchatka Peninsula and the Northern Kuril Islands according to 2017–2021 satellite radar observations. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2024;21(2):251–260. doi:10.21046/2070-7401-2024-21-2-251-260 (in Russian).

12. Svergun E.I., Zimin A.V. Characteristics of Short-Period Internal Waves in the Avacha Bay Based on the In Situ and Satellite Observations in August-September, 2018. Physical Oceanography. 2020;27(3):278–289. doi:10.22449/1573-160X-2020-3-278-289

13. Svergun E.I., Sofina E.V., Zimin A.V., Kruglova K.A. Seasonal variability of characteristics of nonlinear internal waves in the Kuril-Kamchatka region by Sentinel 1 data. Continental Shelf Research. 2023;259:104986. doi:10.1016/j.csr.2023.104986

14. Svergun E.I., Zimin A.V., Romanenkov D.A., Sofina E.V. Short-Period Internal Waves in Shelf Regions with Intense Tidal Dynamics. Izvestiya, Atmospheric and Oceanic Physics. 2022;58(6):585–597. doi:10.1134/s0001433822060160

15. Ilin O.I., Saushkina D. Ya. On the assessment of pollock (Gadus chalcogrammus) roe production in the canyons of Avacha Bay. Issledovaniya Vodnyh Biologicheskih Resursov Kamchatki i Severo-Zapadnoj Chasti Tihogo Okeana. 2022;64:80–84. doi:10.15853/2072-8212.2022.64.80–84 (in Russian).

16. Varkentin A.I., Saushkina D. Ya. On some issues of pollock reproduction in the Pacific waters adjacent to Kamchatka and the northern Kuril Islands in 2013–2022. Izvestia TINRO. 2022;189:105–119. doi:10.36038/2307-3497-2022-189-105-119 (in Russian).

17. Romanenkov D.A., Sofina E.V., Rodikova A.E. Modeling of barotropic tide off the southeastern coast of the Kamchatka Peninsula in view of the accuracy of global tidal models in the Northwest Pacific Ocean. Fundamental and Applied Hydrophysics. 2023; 16(4):45–62. doi:10.59887/2073-6673.2023.16(4)-4

18. Gill A. Dynamics of the atmosphere and ocean. Vol. 1. M.: MIR; 1986. 396 p. (in Russian).

19. Blood D.M., Matarese A.C., Yoclavich M.M. Embryonic development of walleye Pollock, Theragra chalcogramma, from Shelikof Strait, Gulf of Alaska. Fishery Bulletin. 1994;92:207–222.

20. Ilin O.I., Sergeeva N.P., Varkentin A.I. East-Kamchatka Walleye Pollock (Theragra chalcogramma) Stock and TAC Assessment Based on the Precautionary Approach. Trudy VNIRO. 2014;151:62–74 (in Russian).

21. Hollowed A.B., Wilson C.D., Stabeno P.J., Salo S.A. Effect of ocean conditions on the cross-shelf distribution of walleye pollock (Theragra chalcogramma) and capelin (Mallotus villosus). Fisheries Oceanography. 2007;16(2):142–154. doi:10.1111/j.1365-2419.2006.00418.x


Review

For citations:


Konik A.A., Zimin A.V., Atadzhanova O.A., Svergun E.I., Romanenkov D.A., Sofina E.V., Varkentin A.I., Tepnin O.B., Saushkina D.J. Intra-day variability of vertical water structure and distributions walleye pollock eggs in the deep-sea canyons of Avacha Bay: A field experiment during the spawning period. Fundamental and Applied Hydrophysics. 2024;17(4):77-89. https://doi.org/10.59887/2073-6673.2024.17(4)-6

Views: 102


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)