Preview

Fundamental and Applied Hydrophysics

Advanced search

Numerical and physical modeling of generation and evolution of vortex rings in a large-scale hydrophysical water tank

https://doi.org/10.59887/2073-6673.2024.17(4)-4

Abstract

The article focuses on the study of vortex ring generation and evolution in aquatic environments resulting from the discharge of a water jet into a flooded volume. It presents computational data based on well-known relationships from the literature, as well as results from simulations using a newly developed methodology. The characteristics of the vortex ring generator within the experimental setup, created using a large-scale hydrophysical water tank, are justified. Experimental studies were conducted under conditions of thermal stratification of the medium, with a temperature difference between the water jet and the tank. The experimental results on vortex ring formation and motion show good agreement with the computational data. The influence of the thermal stratification in the water tank on the vortex ring characteristics was found to be negligible. A significant effect of the dimensionless jet length on the key characteristics of the vortex rings was observed, along with the temperature differences between the water layer at the formation horizon and the jet, impacting the rings’ trajectory.

About the Authors

R. Yu. Monakhov
Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

36 Nakhimovsky Prosp., Moscow, 117997



A. A. Rodionov
Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

36 Nakhimovsky Prosp., Moscow, 117997



I. Ye. Kapranov
JSC Engineering Center “Kronstadt”
Russian Federation

2, liter. L, Makarovskaya Str., in. ter. city of Kronstadt, St. Petersburg, 197760



N. N. Shpilev
Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

36 Nakhimovsky Prosp., Moscow, 117997



M. S. Yakovchuk
Baltic State Technical University “VOENMEH” named after D.F. Ustinov
Russian Federation

1 1st Krasnoarmeyskaya Str., St. Petersburg, 190005



References

1. Vladimirov V.A., Tarasov V.F. The formation of vortex rings. Izvestiya. SB AN USSR. Seria Technicheskih Nauk. 1980;3(1):3–11. (in Russian).

2. Wood R. Vortex Rings. Library “QUANTUM” issue 4. Experiments in a home laboratory. M.: Nauka; Gl. ed. Phys. mat. lit. 1981. P. 13. (in Russian).

3. Bebieva Ya.S. Formation of flooded jets under various initial conditions. Almanac of Modern Science and Education. Tambov: Gramota; 2011. № 12 (55). P. 25–27. (in Russian)

4. Meleshko V.V., Konstantinov M. Yu. Dynamics of vortex structures. Kiev: Naukova dumka; 1993. P. 72–221 (In Russian).

5. Tarasov V.F. Evaluation of some parameters of a turbulent vortex ring // Dynamics of a continuous medium: Collection of scientific Tr. / USSR Academy of Sciences. Siberian Branch. Institute of Hydrodynamics. 1973;14:120–127 (In Russian).

6. Teslenko V.S., Drozhzhin A.P., Medvedev R.N. Generation of cavitation vortex rings in water. Modern Science: Research, Ideas, Results, Technologies. 2014;1(14):71–74 (In Russian).

7. Shmyglevsky Yu.D., Shcheprov A.V. Axisymmetric vortex formations in a viscous liquid. Computational Mathematics and Mathematical Physics. 1995;35(3):379–382.

8. Ja’fari M., Shojae F.J., Jaworski A.J. Synthetic jet actuators: Overview and applications. International Journal of Thermofluids. 2023;20:100438. doi:10.1016/j.ijft.2023.100438

9. Zhou J., Tang H., Zhong S. Vortex Roll-Up criterion for synthetic jets. AIAA Journal. 2009;47(5). doi:10.2514/1.40602

10. Barton L. Smith, David J. Nani. Effect of orifice shape on synthetic efficiency. UTAH STATE UNIVERSITY, Logan, Utah, 2012.

11. Jabbal M., Tang H., Zhong S. The effect of geometry on the performance of synthetic jet actuators. Conference: 25th Congress of International Council of the Aeronautical Sciences (ICAS2006), At: Hamburg, Germany, September 2006.

12. Tang H., Zhong S. Incompressible flow model of synthetic jet actuator. AIAA Journal. 2006;44(4):908–912. doi:10.2514/1.15633

13. Gharib M., Rambod E., Shariff K. A universal time scale for vortex ring formation Journal of Fluid Mechanics. 1998;360:121–140. doi:10.1017/S0022112097008410

14. Xiong D., Zhixun X., Zhenbing L., Lin W. A novel optimal design for an application-oriented synthetic jet actuator. Chinese Journal of Aeronautics. 2014;27(3):514–520. doi:10.1016/j.cja.2014.04.002

15. Ganeev R.A., Hafizov I.F., Bakirov I.K., Zaripova L.H. Investigation of vortex fluid flows to increase the efficiency of fire extinguishing devices. Oil and Gas Business. 2022;6:30–43. doi:10.17122/ogbus-2022-6-30-43 (in Russian).

16. Gushchin V.A., Matyushin P.V. Vortex formation mechanisms in the wake behind a sphere for 200 < RE < 380. Fluid Dynamics. 2006;41(5):795–809. doi:10.1007/s10697-006-0096-x

17. Gushchin V.A., Matyushin P.V. Mathematical modelling of the 3D incompressible fluid flows. Mathematical Models and Computer Simulations. 2006;18(5): 5–20 (In Russian).

18. Dudoladov I.V., Taganov G.I. Unification of vortex formations in a flat incompressible fluid flow. Scientific Notes of TsAGI. 1977; VIII(4):29–33 (in Russian).

19. Kistovich A.V., Chashechkin Yu.D. Regular and singular components of periodic of flows in the fluid interior. Journal of Applied Mechanics and Technical Physics. 2007;71(5):762–771.

20. Lugovtsov B.A. Turbulent vortex rings. Dynamics of a continuous medium: Collection of scientific tr. USSR Academy of Sciences. Siberian Branch. Institute of Hydrodynamics. 1979;38:71–88 (In Russian).

21. Piralishvili Sh.A., Veretennikov S.V., Tryapina V.A. Flow structure visualization in the reverse-flow vortex tube. Thermal Processes in Engineering. 2023;15(10):439–447 (In Russian).

22. Chashechkin Yu.D., Baidulov V.G., Bardakov R.N., Vasiliev A. Yu., Kistovich A.V., Mitkin V.V., Prokhorov V.E., Stepanova E.V. Mechanics of free stratified flows. Preprint IPMeh RAS No. 876. M.: IPMeh RAS; 2008. 127 p. (In Russian).

23. Akhmetov D.G. Model of vortex ring formation. Journal of Applied Mechanics and Technical Physics. 2008;49(6):909–918. doi:10.1007/s10808-008-0113-4

24. Akhmetov D.G. Formation and basic parameters of vortex rings. Journal of Applied Mechanics and Technical Physics. 2001;42(5):794–805.

25. Akhmetov D.G., Tarasov V.F. On the structure and evolution of vortex nuclei. Journal of Applied Mechanics and Technical Physics. 1986;27(5):68–73.

26. Akhmetov D.G. Vortex rings. Novosibirsk: Geo; 2007. 151 p. (in Russian).

27. Volkov K.N. Methods of visualization of vortex flows in computational gas dynamics and their application in solving applied problems. Scientific and Technical Bulletin of information Technologies, Mechanics and Optics. 2014;3(91). (in Russian).

28. Volkov K.N., Yemelyanov V.N. Modeling of large vortices in calculations of turbulent flows. M., 2008. 368 p. (in Russian)


Review

For citations:


Monakhov R.Yu., Rodionov A.A., Kapranov I.Ye., Shpilev N.N., Yakovchuk M.S. Numerical and physical modeling of generation and evolution of vortex rings in a large-scale hydrophysical water tank. Fundamental and Applied Hydrophysics. 2024;17(4):55-70. (In Russ.) https://doi.org/10.59887/2073-6673.2024.17(4)-4

Views: 96


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)