Submesoscale eddies in Lake Ladoga based on Sentinel-1 radar images from January to December 2016–2022
https://doi.org/10.59887/2073-6673.2024.17(4)-3
Abstract
This study presents the results of the analysis of a long-term dataset of observations on the spatial-temporal variability of submesoscale eddy characteristics in Lake Ladoga using radar imagery. The initial data consisted of more than 3500 high-resolution Sentinel-1A/B satellite images for the period from January 2016 to December 2022. Generalized maps of the occurrence of submesoscale structures on the lake’s waters for the year and by seasons are presented. Average annual and seasonal estimates of the variability of the mean diameters of eddies with different type of rotation were obtained. It was shown that submesoscale structures are a common phenomenon throughout the lake during the period of direct thermal stratification and the presence of a near-surface pycnocline. Cyclonic structures with sizes up to 3 km were most frequently registered, which does not exceed the estimates of the average Rossby deformation radius for Lake Ladoga. Eddies were most often observed north of Valaam Island. No significant interannual variability in their characteristics was found; they were close to the average multi-year values. A pronounced intrayear variability in the characteristics of submesoscale structures was revealed, both in frequency and locations, and to a lesser extent in their sizes. It was established that eddies were most frequently observed in areas with depths of 50–100 meters, near frontal zones of different genesis. In specific cases, the instability in frontal zones in Lake Ladoga appears to be a dominant factor in the formation of small eddy groups, especially in the absence of significant topographic effects or wind influence.
Keywords
About the Authors
A. V. ZiminRussian Federation
36 Nakhimovsky Prosp., Moscow, 117997
50 A. Nevskogo Pr., Petrozavodsk, Republic of Karelia, 185030
O. A. Atadzhanova
Russian Federation
36 Nakhimovsky Prosp., Moscow, 117997
A. A. Konik
Russian Federation
36 Nakhimovsky Prosp., Moscow, 117997
A. V. Isaev
Russian Federation
36 Nakhimovsky Prosp., Moscow, 117997
References
1. Filatov N.N. The modern state and perspective investigations of hydrophysical processes and ecosystems of inland waters (a review). Fundamental and Applied Hydrophysics. 2019;12(1):3–14. doi:10.7868/S2073667319010015 (In Russian)
2. Hutter K., Wang Y., Chubarenko I. Physics of Lakes. Volume 2: Lakes as Oscillators. Heidelberg: Springer Berlin: 2011. 646 p. doi:10.1007/978-3-642-19112-1
3. Hamze-Ziabari S.M., Foroughan M., Lemmin U., Barry D.A. Monitoring Mesoscale to Submesoscale Processes in Large Lakes with Sentinel-1 SAR Imagery: The Case of Lake Geneva. Remote Sensing. 2022;14:4967. doi:10.3390/rs14194967
4. Thomas L.N., Tandon A., Mahadevan A. Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime / Eds. M.W. Hecht, H. Hasumi. Geophysical Monograph Series. 2008;177:17–38. doi:10.1029/177GM04
5. Lévy M., Ferrari R., Franks P.J.S., Martin А.Р., Rivière Р. Bringing physics to life at the submesoscale. Geophysical Research Letters. 2012;39: L14602. doi:10.1029/2012GL052756
6. McKinney P., Holt B., Matsumoto K. Small eddies observed in Lake Superior using SAR and sea surface temperature data. Journal of Great Lakes Research. 2012, 38, 786–797. doi:10.1016/j.jglr.2012.09.023
7. Kostianoy A.G., Soloviev D.M., Kostianaia E.A., Sirota A.M. Satellite remote sensing of Lake Skadar/Shkodra. Shkodra Lake Environment, Part of the The Handbook of Environmental Chemistry. 2018;80:89–120. doi:10.1007/698_2018_308
8. Kondratyev K. Ya., Filatov N.N., Zaitsev L.V., Zubenko A.V. Features of the dynamics of the waters of Lake Ladoga according to remote sensing data. Reports of the USSR Academy of Sciences. 1987;293(5):1224–1227 (In Russian).
9. Zimin A.V., Atadzhanova O.A., Blagodatskikh E.A. et al. Submesoscale Eddy Structures of Lake Ladoga According to Sentinel-1 Radar Data for a Warm Period of 2019–2022. Dokly Earth Sciences. 2024;514:296–300. doi:10.1134/S1028334X23602742
10. Zimin A.V., Blagodatskikh E.A., Atadzhanova O.A. Small eddies observed in Ladoga and Onega Lakes using SAR data. Complex Investigation of the World Ocean (CIWO-2023). Springer Proceedings in Earth and Environmental Sciences. Springer: Cham; 2023, 191–197. doi:10.1007/978-3-031-47851-2_22
11. Hamze-Ziabari S.M., Foroughan M., Lemmin U., Barry D.A. Monitoring mesoscale to submesoscale processes in large lakes with Sentinel-1 SAR imagery: The case of Lake Geneva. Remote Sensing. 2022;14(19):4967. doi:10.3390/rs14194967
12. Ginzburg A.I., Kostianoy A.G., Sheremet N.A., Lavrova O. Yu. Water Dynamics and Morphometric Parameters of Lake Sevan (Armenia) in the Summer–Autumn Period According to Satellite Data. Remote Sensing. 2024;16:2285. doi:10.3390/rs16132285
13. Isaev A.V., Ryabchenko V.A., Konik A.A. Reproduction of the Current Climatic State of the Lake Ladoga Ecosystem. Fundamental and Applied Hydrophysics. 2024;17(2):50–65. doi:10.59887/2073-6673.2024.17(2)-5
14. Filatov N.N. Hydrodynamics of Lakes. St. Petersburg: Nauka; 1991. 200 p. (In Russian).
15. Bashmachnikov I.L., Kozlov I.E., Petrenko L.A., Glok N.I., Wekerle C. Eddies in the North Greenland Sea and Fram Strait from satellite altimetry, SAR and high-resolution model data. Journal of Geophysical Research: Oceans. 2020;125: e2019JC015832. doi:10.1029/2019JC015832
16. Kozlov I.E., Atadzhanova O.A. Eddies in the marginal ice zone of Fram Strait and Svalbard from Spaceborne SAR observations in winter. Remote Sensing. 2022;14:134. doi:10.3390/rs14010134
17. Lee J.-S. Digital image smoothing and the sigma filter. Computer Vision, Graphics, and Image Processing. 1984;24(2):255–269. doi:10.1016/0734-189x(83)90047-6
18. Munk W., Armi L., Fischer K., Zachariasen, F. Spirals on the sea. Proceedings of the Royal Society of London A. 2000;456:1217–1280. doi:10.1098/rspa.2000.0560
19. Karimova S.S., Gade M. Improved statistics of sub-mesoscale eddies in the Baltic Sea retrieved from SAR imagery. International Journal of Remote Sensing. 2016;37(10):2394–2414. doi:10.1080/01431161.2016.1145367
20. Stuhlmacher A., Gade M. Statistical Analyses of Eddies in the Western Mediterranean Sea based on Synthetic Aperture Radar Imagery. Remote Sensing of Environment. 2020;250:112023. doi:10.1016/j.rse.2020.112023
21. Kondratyev K. Ya., Filatov N.N., Melentev V.V. et al. Limnology and Remote Sensing: A Contemporary Approach. London: Springer Science & Business Media; 1999. 406 p.
22. Atadzhanova O.A., Zimin A.V., Romanenkov D.A., Kozlov I.E. Satellite Radar Observations of Small Eddies in the White, Barents and Kara Seas. Physical Oceanography. 2017;2:75–83. doi:10.22449/1573-160X-2017-2-75-83
23. Malm J., Grahn L., Mironov D., Terzhevik A. Field Investigation of the Thermal Bar in Lake Ladoga, Spring 1991. Hydrology Research. 1993;24(4):339–358. doi:10.2166/nh.1993.12
Review
For citations:
Zimin A.V., Atadzhanova O.A., Konik A.A., Isaev A.V. Submesoscale eddies in Lake Ladoga based on Sentinel-1 radar images from January to December 2016–2022. Fundamental and Applied Hydrophysics. 2024;17(4):43-54. (In Russ.) https://doi.org/10.59887/2073-6673.2024.17(4)-3