Evolution of mesoscale vortices in the ocean into filaments inferred from altimeter data
https://doi.org/10.59887/2073-6673.2024.17(4)-1
Abstract
Satellite remote sensing techniques offer a wealth of optical, infrared (IR), and radar images of the ocean surface, where we can observe numerous elongated vortex structures known as filaments. These filaments become readily visible in the imagery due to the presence of surfactant films and/or floating algae clusters on the sea’s surface. Given their elongated form, automated vortex identification methods do not readily distinguish filaments from vortices. Nevertheless, both filaments and vortices exhibit notable characteristics such as high relative vorticity and kinetic energy. The process by which vortices transform into filaments is a result of their interaction with spatially non-uniform background currents. In this study, we apply the theoretical principles regarding the stretching of mesoscale ocean vortices to real ocean conditions, inferred from altimeter data. The primary objective of this research is to assess the proportion of mesoscale ocean vortices that undergo stretching to become filaments, consequently facilitating the redistribution of energy from the mesoscale to the submesoscale. We provide a total assessment of the portion of the World Ocean’s surface where mesoscale vortices undergo significant stretching. We present maps that indicate the geographical distribution of regions where vortex stretching is not restricted and offer an interpretation of the findings. The reduction in the inherent energy of vortices due to the stretching induced by the background flow is explained as a potential mechanism for energy transfer from the vortex to the flow, possibly leading to the manifestation of the negative viscosity effect within this system.
About the Authors
V. V. ZhmurRussian Federation
Zhmur, Vladimir V., Head of the Laboratory, Chief Researcher, Dr. Sc. (Phys.-Math.), Corresponding Member of the Russian Academy of Sciences
WoS ResearcherID: P-9738-2015, Scopus AuthorID: 6602162918
7–9 Universitetskaya Emb., St. Petersburg, 199034
36 Nakhimovsky Prosp., Moscow, 117997
9 Institutskiy per., Dolgoprudny, Moscow Region, 141701
T. V. Belonenko
Russian Federation
Belonenko, Tatyana V., Professor of the Department of Oceanology
Scopus Author ID: 6507005889, WoS ResearcherID: K-2162-2013
7–9 Universitetskaya Emb., St. Petersburg, 199034
E. V. Novoselova
Russian Federation
Novoselova, Elena V., Researcher
WoS ResearcherID: AAZ-6650-2020, Scopus AuthorID: 57219992097
7–9 Universitetskaya Emb., St. Petersburg, 199034
7 Line 14 V.O., St. Petersburg, 199034
B. P. Suetin
Russian Federation
Suetin, Boris P., Postgraduate student
Scopus AuthorID: 58153398500
9 Institutskiy per., Dolgoprudny, Moscow Region, 141701
References
1. Chelton D.B., Schlax M.G., Samelson R.M. Global observations of nonlinear mesoscale eddies. Progress in Oceanography. 2011;91:167–216. doi:10.1016/j.pocean.2011.01.002
2. Wood R.A. Mesoscale/Synoptic Coherent structures in Geophysical Turbulence. Editors: B.M. Jamart, J.C.J. Nihoul. 1989;50:265, 9780444874702
3. Nencioli F., Dong C., Dickey T.D., Washburn L., McWilliams J.C. A vector geometry based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. Journal of Atmospheric and Oceanic Technology. 2010;27(3):564–579. doi:10.1175/2009jtecho725.1
4. Gurova E.S., Ivanov A. Yu. Appearance of Sea Surface Signatures and Current Features in the South-East Baltic Sea on the MODIS and SAR images. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2011;4:41–54 (In Russ.).
5. Zhmur V.V., Belonenko T.V., Novoselova E.V., Suetin B.P. Conditions for Transformation of a Mesoscale Vortex into a Submesoscale Vortex Filament When the Vortex Is Stretched by an Inhomogeneous Barotropic Flow. Oceanology. 2023;63(2):174–183. doi:10.1134/S0001437023020145
6. Zhmur V.V., Belonenko T.V., Travkin V.S. et al. Changes in the Available Potential and Kinetic Energy of Mesoscale Vortices When They Are Stretched into Filaments. Journal of Marine Science and Engineering. 2023;11:1131. doi:10.3390/jmse11061131
7. Belonenko T.V., Zinchenko V.A., Fedorov A.M. et al. Interaction of the Lofoten Vortex with a satellite cyclone. Pure and Applied Geophysics. 2021;178:287–300. doi:10.1007/s00024-020-02647-1
8. Batchelor G.K. An Introduction to Fluid Dynamics. Cambridge at the University Press; 1970. 778 p.
9. McDowell S.E., Rossby H.T. Mediterranean Water: An Intense Mesoscale Eddy off the Bahamas. Science. 1978;202(4372): 1085–1087. doi:10.1126/science.202.4372.1085
10. Carton X. Hydrodynamical Modeling Of Oceanic Vortices. Surveys in Geophysics. 2001;22:179–263. doi:10.1023/A:1013779219578
11. Fer I., Bosse A., Ferron B., Bouruet-Aubertot P. The dissipation of kinetic energy in the Lofoten Basin Eddy. The Journal of Physical Oceanography. 2018;48(6):1299–1316. doi:10.1175/JPO-D-17–0244.1
12. Zhmur V.V., Novoselova E.V., Belonenko T.V. Peculiarities of Formation the of Density Field in Mesoscale Eddies of the Lofoten Basin: Part 2. Oceanology. 2022;62(3):289–302. doi:10.1134/S0001437022030171
13. Chaplygin S.A. On a pulsating cylindrical vortex. Trans. Phys. Sect. Imperial Moscow Soc. Friends of Natural Sciences. 1899;10(1):13–22.
14. Chaplygin S.A. Collected Works, Vol. 2. Moscow, Leningrad: Gostekhizdat; 1948:643 p. (in Russ.).
15. Kida S. Motion of an Elliptic Vortex in a Uniform Shear Flow. Journal of the Physical Society of Japan. 1981;50(10):3517–3520. doi:10.1143/JPSJ.50.3517
16. Polvani L.M., Flierl G.R. Generalized Kirchhoff vortices. Physics Fluids. 1986;29:2376–2379. doi:10.1063/1.865530
17. McKiver W.J., Dritschel G.G. Balanced solutions for an ellipsoidal vortex in a rotating stratified flow. Journal of Fluid Mechanics. 2016;802:333–358. doi:10.1017/jfm.2016.462
18. Zhmur V.V. Mesoscale Ocean Eddies. Moscow: GEOS; 2011. 289 p. (in Russ.).
19. Zhmur V.V., Novoselova E.V., Belonenko T.V. Peculiarities of formation of the density field in mesoscale eddies of the Lofoten Basin: Part 1. Oceanology. 2021;61(6):830–838. doi:10.1134/S0001437021060333
20. Zhmur V.V., Novoselova E.V., Belonenko T.V. Potential Vorticity in the Ocean: Ertel and Rossby Approaches with Estimates for the Lofoten Vortex. Izvestiya, Atmospheric and Oceanic Physics. 2021;57(6):632–641. doi:10.1134/S0001433821050157
21. Meacham S.P. Quasigeostrophical ellipsoidal vortices in stratified fluid. Dynamics of Atmospheres and Oceans. 1992;16(3–4):189–223.
22. Meacham S.P., Pankratov K.K., Shchepetkin A.F., Zhmur V.V. The interaction of ellipsoidal vortices with background shear flows in a stratified fluid. Dynamics of Atmospheres and Oceans. 1994;21(2–3):167–212. doi:10.1016/0377-0265(94)90008-6
23. Zhmur V.V., Harutyunyan D.A. Redistribution of Energy during Horizontal Stretching of Ocean Vortices by Barotropic Currents. Oceanology. 2023;63:1–16. doi: P10.1134/S0001437023010186
24. Zhmur V.V., Travkin V.S., Belonenko T.V., Arutyunyan D.A. Transformation of Kinetic and Potential Energy during Elongation of a Mesoscale Vortex. Physical Oceanography. 2022;29(5):449–462. doi:10.22449/1573-160X-2022-5-449-462
25. McKiver W.J., Dritschel D.G. The motion of a fluid ellipsoid in a general linear background flow. Journal of Fluid Mechanics. 2003;474:147–173. doi:10.1017/S0022112002002859
26. McKiver W.J., Dritschel D.G. The stability of a quasi-geostrophic ellipsoidal vortex in a background shear flow. Journal of Fluid Mechanics. 2006;560:1–17. doi:10.1017/S0022112006000462
27. Dritschel D.G., Reinaud J.N., McKiver W.J. The quasi-geostrophic ellipsoidal vortex model. Journal of Fluid Mechanics. 2004;505:201–223. doi:10.1017/s0022112004008377
28. Reinaud J.N., Dritschel D.G. The merger of vertically offset quasi-geostrophic vortices, Journal of Fluid Mechanics. 2002;469:287–315. doi:10.1017/s0022112002001854
29. Starr V.P. Physics of Negative Viscosity Phenomena. McGraw-Hill. 1968; 256 p.
30. Volkov D.L., Belonenko T.V., Foux V.R. Puzzling over the dynamics of the Lofoten Basin — a sub-Arctic hot spot of ocean variability. Geophysical Research Letters. 2013; 40(4):738–743. doi:10.1002/grl.50126
31. Zhmur V.V., Belonenko T.V., Novoselova E.V., Suetin B.P. Direct and Inverse Energy Cascades in the Ocean during Vortex Elongation. Doklady Earth Sciences. 2023;508(2): 233–236. doi:10.1134/S1028334X22601675
32. Zhmur V.V., Belonenko T.V., Novoselova E.V., Suetin B.P. Application to the World Ocean of the Theory of Transformation of a Mesoscale Vortex into a Submesoscale Vortex Filament When the Vortex Is Elongated by an Inhomogeneous Barotropic Flow. Oceanology. 2023;63(2):184–194. doi:10.1134/S0001437023020157
33. Zinchenko V.A., Gordeeva S.M., Sobko Yu.V., Belonenko T.V. Analysis of Mesoscale eddies in the Lofoten Basin based on satellite altimetry. Fundamental and Applied Hydrophysics. 2019;12(3):46–54. doi:10.7868/S2073667319030067
34. Fedorov A.M., Belonenko T.V. Interaction of mesoscale vortices in the Lofoten Basin based on the GLORYS database. Russian Journal of Earth Sciences. 2020;20: ES2002. doi:10.2205/2020ES000694
35. Raj R.P., Halo I., Chatterjee S., Belonenko T., Bakhoday-Paskyabi M., Bashmachnikov I., Fedorov A., Xie J. Interaction between mesoscale eddies and the gyre circulation in the Lofoten Basin. Journal of Geophysical Research: Oceans. 2020;125(7): e2020JC016102. doi:10.1029/2020JC016102
36. Le Traon P.Y., Reppucci A., Alvarez Fanjul E., et al. From observation to information and users: The Copernicus Marine Service perspective. Frontiers in Marine Science. 2019;6: 234. doi:10.3389/fmars.2019.00234
37. Pujol M.-I., Faugère Y., Taburet G., Dupuy S., Pelloquin C., Ablain M., Picot N. DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20years. Ocean Science. 2016;12(5):1067–1090. doi:10.5194/os-12-1067-2016
38. Volkov D.L., Kubryakov A., Lumpkin R. Formation and variability of the Lofoten Basin vortex in a high-resolution ocean model. Deep Sea Research. Part I. 2015;105:142–157. doi:10.1016/j.dsr.2015.09.001
39. Gaube P., McGillicuddy Jr.D.J., Moulin A.J. Mesoscale eddies modulate mixed layer depth globally. Geophysical Research Letters. 2019;46:1505–1512. doi: 10.1029/2018GL080006
40. Gordeeva S., Zinchenko V., Koldunov A., Raj R.P., Belonenko T. Statistical analysis of long-lived mesoscale eddies in the Lofoten Basin from satellite altimetry. Advances in Space Research. 2021;68(2):364–377. doi:10.1016/j.asr.2020.05.043
41. Sandalyuk N.V., Belonenko T.V. Three-Dimensional Structure of the mesoscale eddies in the Agulhas Current region from hydrological and altimetry data. Russian Journal of Earth Sciences. 2021;21: ES4005. doi:10.2205/2021ES000764
42. Sandalyuk N.V., Bosse A., Belonenko T.V. The 3-D structure of mesoscale eddies in the Lofoten Basin of the Norwegian Sea: A composite analysis from altimetry and in situ data. Journal of Geophysical Research: Oceans. 2020;125: e2020JC016331
43. Yu L.-S., Bosse A., Fer I., Orvik K.A., Bruvik E.M., Hessevik I., Kvalsund K. The Lofoten Basin eddy: Three years of evolution as observed by Seagliders. Journal of Geophysical Research: Oceans. 2017;122:6814–6834. doi:10.1002/2017JC012982
44. Rossby T., Ozhigin V., Ivshin V., Bacon S. An isopycnal view of the Nordic seas hydrography with focus on properties of the Lofoten Basin. Deep Sea Research. Part I. 2009;56(11):1955–1971. doi:10.1016/j.dsr.2009.07.005
45. Andersson M., LaCasce J.H., Koszalka I., Orvik K.A., Mauritzen C. Variability of the Norwegian Atlantic Current and associated eddy field from surface drifters. Journal of Geophysical Research: Oceans. 2011;116: C08032. doi:10.1029/2011JC007078
46. Koszalka I., LaCasce J.H., Andersson M.K., Orvik A., Mauritzen C. Surface circulation in the Nordic seas from clustered drifters. Deep Sea Research. Part I. 2011;58:468–485. doi:10.1016/j.dsr.2011.01.007
47. Søiland H., Rossby T. On the structure of the Lofoten Basin Eddy. Journal of Geophysical Research: Oceans. 2013;118:4201–4212. doi:10.1002/jgrc.20301
48. Belonenko T.V., Koldunov A.V., Sentyabov E.V., Karsakov A.L. Thermohaline structure of the Lofoten vortex in the Norwegian Sea based on in-situ and model data. Vestn. S.-Peterb. Univ., Nauki Zemle. 2018; 63(4): 502–519. doi:10.21638/spbu07.2018.406
49. Bosse A., Fer I., Søiland H., Rossby T. Atlantic water transformation along its poleward pathway across the Nordic Seas. Journal of Geophysical Research: Oceans. 2018;123: 6428–6448. doi:10.1029/2018JC014147
50. Travkin V.S., Belonenko T.V. Seasonal variability of mesoscale eddies of the Lofoten Basin using satellite and model data. Russian Journal of Earth Sciences. 2019;19: ES5004. doi:10.2205/2019ES000676
51. Raj R.P., Chafik L., Even J., Nilsen O., Eldevik T., Halo I. The Lofoten vortex of the Nordic seas. Deep Sea Research. Part I. 2015;96:1–14. doi:10.1016/j.dsr.2014.10.011
52. Raj R.P., Johannessen J.A., Eldevik T., Nilsen J.E.O., Halo I. Quantifying mesoscale eddies in the Lofoten Basin. Journal of Geophysical Research. 2016;121:4503–4521. doi:10.1002/2016JC01163.7
53. Köhl A. Generation and stability of a quasi-permanent vortex in the Lofoten Basin. Journal of Physical Oceanography. 2007;37(11):2637–2651. doi:10.1175/2007jpo3694.1
54. Belonenko T.V., Volkov D.L., Ozhigin V.K., Norden Yu.E. Water circulation in the Lofoten Basin of the Norwegian Sea. Vestn. S.-Peterb. Univ., Ser. 7: Geol., Geogr. 2014;2:108–121 (In Russ.).
55. Bashmachnikov I.L., Belonenko T.V., Kuibin P.A. Application of the theory of columnar Q-vortices with helical structure for the Lofoten vortex in the Norwegian Sea. Vestn. S.-Peterb. Univ., Nauki Zemle. 2017;62(3):221–336. doi:10.21638/11701/spbu07.2017.301
56. Bashmachnikov I.L., Fedorov A.M., Vesman A.V., Belonenko T.V., Dukhovskoy D.S.. Thermohaline convection in the subpolar seas of the North Atlantic from satellite and in situ observations. Part 2: Indices of intensity of deep convection. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2019;16(1):191–201. doi:10.21046/2070-7401-2019-16-1-191-201
57. Bashmachnikov I.L., Fedorov A.M., Vesman A.V., Belonenko T.V., D.S. Dukhovskoy. Thermohaline convection in the subpolar seas of the North Atlantic from satellite and in situ observations. Part 1: Localization of the deep convection sites. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2018;15(7):184–194. doi:10.21046/2070-7401-2018-15-7-184-194
58. Bashmachnikov I.L., Sokolovskiy M.A., Belonenko T.V., Volkov D.L., Isachsen P.E., Carton X. On the vertical structure and stability of the Lofoten Vortex in the Norwegian Sea. Deep Sea Research. Part I. 2017;128;1–27. doi:10.1016/j.dsr.2017.08.001
59. Okubo A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Research and Oceanographic Abstracts 1970;17:445–454. doi:10.1016/0011-7471(70)90059-8
60. Weiss J. The dynamics of enstrophy transfer in two dimensional hydrodynamics. Physica D. 1991;48(2–3):273–294. doi:10.1016/0167-2789(91)90088-q
61. Travkin V.S., Belonenko T.V., Budyansky M.V., Prants S.V., Uleysky M.Y., Gnevyshev V.G., et al. Quasi-Permanent Mushroom-like Dipole in the Lofoten Basin. Pure and Applied Geophysics. 2022;179(1):465–482. doi:10.1007/s00024-021-02922-9
62. Griffiths R.W., Hopfinger E.J. Coalescing of geostrophic vortices. Journal of Fluid Mechanics. 1987;178:73–97. doi:10.1017/S0022112087001125
63. Kirchhoff G. Vorlesungen über matematische Physic: Mechanik. Leipzig: Teubner; 1876. 489 p.
Review
For citations:
Zhmur V.V., Belonenko T.V., Novoselova E.V., Suetin B.P. Evolution of mesoscale vortices in the ocean into filaments inferred from altimeter data. Fundamental and Applied Hydrophysics. 2024;17(4):8-31. https://doi.org/10.59887/2073-6673.2024.17(4)-1