Preview

Fundamental and Applied Hydrophysics

Advanced search

Features of Empirical Bio-Optical Algorithms for Estimating Chlorophyll-a Concen tration from Satellite Ocean Color Data in Waters around the Antarctic Peninsula

https://doi.org/10.59887/2073-6673.2024.17(3)-9

Abstract

The features of the empirical bio-optical algorithm operation in the waters around the Antarctic Peninsula are analyzed based on a comparison of calibrated data from the shipborne flow fluorimeter and satellite data from the OLCI radiometer on Senti nel-3A and Sentinel-3B satellites during the Antarctic summers of January-February 2020 and 2022. It is shown that the standard OC4 bio-optical algorithm significantly underestimates satellite estimates of Chl-a concentration from ~1.5 to ~9 times (on aver age by a factor of ~3.1). The known regional OC4-SO algorithm provides acceptable errors of Chl-a concentration estimates and can be used for studies related to the analysis of Chl-a concentration in the waters around the Antarctic Peninsula. The developed in this work new regional algorithm OC4-AP has significantly lower error in comparison with the known standard and regional algorithms. It can be used if it is necessary to obtain a remote estimate of the concentration of Chl-a, as close as possible to the accumulated world experience in determining this value by standard extract spectrophotometric and fluorimetric methods. The observed underestimation of satellite estimates of Chl-a concentration using the standard empirical bio-optical OC4 algorithm can be attributed to at least three reasons typical for the studied water area: low relative CDOM content, high phycoerythrin content, and stronger effect of pigment packing in phytoplankton cells compared to the average values in the World Ocean.

About the Authors

P. A. Salyuk
V.I. Ilichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences
Russian Federation

690041, Baltiyskaya Str., 43, Vladivostok



D. I. Glukhovets
Shirshov Institute of Oceanology, Russian Academy of Sciences; Moscow Institute of Physics and Technology
Russian Federation

117997, Nakhimovsky prospect, 36, Moscow

141700, Institutskiy pereulok, 9, Dolgoprudny



A. Yu. Mayor
Institute for Automation and Control Processes, Far Eastern Branch of Russian Academy of Sciences
Russian Federation

690041, Radio Str., 5, Vladivostok



N. A. Moiseeva
A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences
Russian Federation

299011, Nakhimova prospect, 2, Sevastopol



E. A. Shtraikhert
V.I. Ilichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences
Russian Federation

690041, Baltiyskaya Str., 43, Vladivostok



A. A. Latushkin
Marine Hydrophysical Institute, Russian Academy of Sciences
Russian Federation

299011, Kapitanskaya Str., 2, Sevastopol



N. A. Lipinskaya
V.I. Ilichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences
Russian Federation

690041, Baltiyskaya Str., 43, Vladivostok



I. A. Golik
V.I. Ilichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences
Russian Federation

690041, Baltiyskaya Str., 43, Vladivostok



S. A. Mosharov
Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

117997, Nakhimovsky prospect, 36, Moscow



M. I. Gorbov
V.I. Ilichev Pacific Oceanological Institute, Far Eastern Branch of Russian Academy of Sciences
Russian Federation

690041, Baltiyskaya Str., 43, Vladivostok



References

1. Churilova T., Moiseeva N., Skorokhod E. et al. Parameterization of Light Absorption of Phytoplankton, Non-algal Par ticles and Coloured Dissolved Organic Matter in the Atlantic Region of the Southern Ocean (Austral Summer of 2020). Remote Sensing. 2023;15(3):634, 1–24. doi:10.3390/rs15030634

2. Pereira E.S., Garcia C.A.E. Evaluation of Satellite-Derived MODIS Chlorophyll Algorithms in the Northern Antarctic Peninsula. Deep Sea Research Part II: Topical Studies in Oceanography. 2018;149:124–137. doi:10.1016/j.dsr2.2017.12.018

3. Ferreira A., Brito A.C., Mendes C.R.B. et al. OC4-SO: A New Chlorophyll-a Algorithm for the Western Antarctic Pen insula Using Multi-Sensor Satellite Data. Remote Sensing. 2022; 14(5):1052, 1–24. doi:10.3390/rs14051052

4. Zeng C., Xu H., Fischer A. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance. Sensors. 2016;16(12): 2075, 1–14. doi:10.3390/s16122075

5. Szeto M., Werdell P.J., Moore T.S., Campbell J.W. Are the World’s Oceans Optically Different? Journal of Geophysical Research: Oceans. 2011;116(C7): C00H04, 1–14. doi:10.1029/2011JC007230

6. Moutier W., Thomalla S., Bernard S. et al. Evaluation of Chlorophyll-a and POC MODIS Aqua Products in the South ern Ocean. Remote Sensing. 2019, 11(15), 1793, 1–18. doi:10.3390/rs11151793

7. Jena B. The effect of phytoplankton pigment composition and packaging on the retrieval of chlorophyll-a concentration from satellite observation in the Southern Ocean. International Journal of Remote Sensing. 2017;38:3763–3784. doi:10.1080/01431161.2017.1308034

8. Uitz J., Roesler C., Organelli E. et al. Characterization of Bio‐Optical Anomalies in the Kerguelen Region, Southern In dian Ocean: A Study Based on Shipborne Sampling and BioGeoChemical‐Argo Profiling Floats. Journal of Geophysical Research: Oceans. 2023;128(12): e2023JC019671, 1–33. doi:10.1029/2023JC019671

9. Reynolds R.A., Stramski D., Mitchell B.G. A Chlorophyll‐dependent Semianalytical Reflectance Model Derived from Field Measurements of Absorption and Backscattering Coefficients within the Southern Ocean. Journal of Geophysical Research: Oceans. 2001;106(C4):7125–7138. doi:10.1029/1999JC000311

10. Dierssen H.M., Smith R.C. Bio‐optical properties and remote sensing ocean color algorithms for Antarctic Peninsula waters. Journal of Geophysical Research: Oceans. 2000;105(C11):26301–26312. doi:10.1029/1999JC000296

11. Salyuk P.A., Glukhovets D.I., Moiseeva N.A. et al. Phycoerythrin influence on the optical characteristics of seawater in the Atlantic sector of the Southern Ocean. Proceedings of SPIE. 2020, 11560, 1156056, 1–6. doi:10.1117/12.2575813

12. Glukhovets D.I., Salyuk P.A., Moiseeva N.A. Modeling the remote sensing reflectance spectra taking into account the absorption of phycoerythrin. Proceedings of SPIE. 2023, 12780, 127804H, 1–5. doi:10.1117/12.2692573 13. Morozov E.G., Flint M.V., Spiridonov V.A., Tarakanov R.Y. Multidisciplinary Program Of Field Studies Of The Eco system In The Atlantic Sector Of The Southern Ocean (December 2019–March 2020). Oceanology. 2019, 59(6), 989 991. doi:10.1134/S0001437019060134

13. Morozov E.G., Flint M.V., Orlov A.M. et al. Oceanographic and Ecosystem Studies In The Atlantic Sector Of Antarc tica (Cruise 87 Of The Research Vessel Akademik Mstislav Keldysh). Oceanology. 2022, 62(5), 721–723. doi:10.1134/S0001437022050150

14. Shtraikhert E.A., Zakharkov S.P., Salyuk P.A. et al. The Chlorophyll-a Content Distribution in the Atlantic Ocean in December 2019 — January 2020 according to Ship Measurements at the Different Hydrometeorological Conditions. Fundamental and Applied Hydrophysics. 2022, 15(3), 97–113. doi:10.59887/fpg/9rxr-badt-2vde (in Russian).

15. Major A. Yu., Pavlov A.N., Bukin O.A. Laser fluorimeter. Patent for utility model RU108844 U1, 09.27.2011. Applica tion No. 2011113077/28 dated 04/05/2011 (in Russian).

16. UNESCO Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements; IOC Manuals and Guides; UNESCO.; UNESCO: Paris, France, 1994. 18. Holm-Hansen O., Riemann B. Chlorophyll a Determination: Improvements in Methodology. Oikos. 1978, 30(3), 438 447. doi:10.2307/3543338

17. Jeffrey S.W., Humphrey G.F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen. 1975, 167(2), 191–194. doi:10.1016/S0015-3796(17)30778-3

18. Bricaud A., Morel A., Babin M., Allali K., Claustre H. Variations of light absorption by suspended particles with chloro phyll a concentration in oceanic (case 1) waters: Analysis and implications for bio‐optical models. Journal of Geophysical Research: Oceans. 1998, 103(C13), 31033–31044. doi:10.1029/98JC02712

19. Glukhovets D.I., Sheberstov S.V., Kopelevich O.V., Zajceva A.F., Pogosyan S.I. Measurement of sea water absorption factor using integrating sphere. Light Engineering. 2018, 26 (1), 120–126. doi:10.33383/2016-079

20. Boss E., D’Sa E.J., Freeman S. et al. Inherent Optical Property Measurements and Protocols: Absorption Coefficient (v 1.0); / Neeley A.R., Mannino A., Eds. Ocean Optics & Biogeochemistry Protocols for Satellite Ocean Colour Sensor Val idation. IOCCG: Dartmouth, Canada. 2018, 1.

21. Mannino A., Novak M.G., Nelson N.B. et al. Measurement Protocol of Absorption by Chromophoric Dissolved Organ ic Matter (CDOM) and Other Dissolved Materials (DRAFT) / Mannino A., Novak M.G., Eds. IOCCG Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation; IOCCG: Dartmouth, Canada. 2019, 5.

22. NASA Ocean Color. URL: https://oceancolor.gsfc.nasa.gov/ (access date: 15.09.2024) 25. NASA Earthdata. Algorithm Publication Tool. URL: https://oceancolor.gsfc.nasa.gov/resources/atbd/chlor_a/ (access date: 15.09.2024). doi:10.5067/JCQB8QALDOYD

23. O’Reilly J.E., Werdell P.J. Chlorophyll Algorithms for Ocean Color Sensors — OC4, OC5 & OC6. Remote Sensing of Environment. 2019, 229, 32–47. doi:10.1016/j.rse.2019.04.021

24. Sosik H.M., Vernet M., Mitchell B.G. A Comparison of Particulate Absorption Properties between High and Mid-Lat itude Surface Waters. Antarctic Journal of the United States. 1992, 27(5), 162–164.

25. Sapozhnikov P.V., Kalinina O.Y., Morozova T.V. Phytopelagic Communities of the Powell Basin in the Summer of 2020 / In: Morozov, E.G., Flint, M.V., Spiridonov, V.A. (eds). Antarctic Peninsula Region of the Southern Ocean. Advanc es in Polar Ecology. 2021, 6. Springer, Cham. doi:10.1007/978-3-030-78927-5_21

26. Gordon H.R., Brown O.B., Evans R.H. A semianalytic radiance model of ocean color. Journal of Geophysical Research: Atmospheres. 1988, 93(D9), 10909–10924. doi:10.1029/JD093iD09p10909


Review

For citations:


Salyuk P.A., Glukhovets D.I., Mayor A.Yu., Moiseeva N.A., Shtraikhert E.A., Latushkin A.A., Lipinskaya N.A., Golik I.A., Mosharov S.A., Gorbov M.I. Features of Empirical Bio-Optical Algorithms for Estimating Chlorophyll-a Concen tration from Satellite Ocean Color Data in Waters around the Antarctic Peninsula. Fundamental and Applied Hydrophysics. 2024;17(3):102-114. (In Russ.) https://doi.org/10.59887/2073-6673.2024.17(3)-9

Views: 152


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)