Preview

Fundamental and Applied Hydrophysics

Advanced search

Influence of the Kara Sea Surface Layer Parameters on the Accuracy of Chlorophyll-a Concentration Estimation by the Bio-optical Algorithms

https://doi.org/10.59887/2073-6673.2024.17(3)-8

Abstract

The results of the hydro-optical model setup in the HydroLight software for three stations in the Kara Sea characterized by different vertical distributions of the values of bio-optical properties are presented. The selected distributions are typical for the areas of the Kara Sea influenced by the river runoff. The stations are located inside, outside and at the boundary of the surface desalinated layer. The model reproduces the spectra of remote sensing reflectance, vertical profiles of light attenuation coefficient of sea water and photosynthetically available radiation measured in expeditions with good accuracy (average relative error less than 10 %). The results obtained made it possible to evaluate the accuracy of different algorithms for determining chlorophyll-a concentration in the range of values typical for the Kara Sea. For the same purpose, similar calculations were performed for different values of the absorption coefficient of colored dissolved organic matter. It is shown that the IO RAS regional algorithm allows estimation of chlorophyll-a concentration in the range of values exceeding 0.5 mg/m3 with a significantly smaller relative error (less than 50 %) than the semi-analytical GIOP algorithm (more than 100 %). At the same time, variations in the yellow matter absorption coefficient have a significantly smaller impact on the results of the regional algorithm. The significant influence of the initial approximation of chlorophyll-a concentration values on the results of the semi-analytical GIOP algorithm makes it unsuitable for use in the area of influence of river runoff in the Kara Sea. A numerical method for determining the thickness of the layer forming 90 % of the water-leaving radiance was implemented, which will allow a more detailed assessment of the influence of surface layer parameters on the accuracy of chlorophyll-a concentration estimation in the Kara Sea based on satellite ocean color data in the future.

About the Authors

D. N. Deryagin
Shirshov Institute of Oceanology of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
Russian Federation

117997, Nakhimovsky pr., 36, Moscow

141701, Institutskiy per., 9, Dolgoprudny, Moscow region



S. V. Vazyulya
Shirshov Institute of Oceanology of the Russian Academy of Sciences
Russian Federation

117997, Nakhimovsky pr., 36, Moscow



D. I. Glukhovets
Shirshov Institute of Oceanology of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
Russian Federation

117997, Nakhimovsky pr., 36, Moscow

141701, Institutskiy per., 9, Dolgoprudny, Moscow region



References

1. Lavrova O. Yu., Kostianoy A.G., Lebedev S.A., Mityagina V.I., Ginzburg A.I., Sheremet N.A. Complex Satellite Moni toring of the Russian Seas. Moskva: IKI RAN;2011. 480 p. (in Russian).

2. Kuznetsova O.A., Kopelevich O.V., Sheberstov S.V., Burenkov V.I., Mosharov S.A., Demidov A.B. Estimation of chloro phyll concentration in the Kara Sea from data of MODIS-aqua satellite scanner. Issledovanie Zemli iz Kosmosa. 2013;5:21 31 (in Russian).

3. Saling I.V., Vazyulya S.V., Demidov A.B. Modification of a regional algorithm for calculating chlorophyll concentration in the Kara Sea. Proceedings of the XXX International Symposium “Atmospheric and Ocean Optics. Atmospheric Physics”. Tomsk, IOA SB RAS, 2024: C57–C60 (in Russian).

4. Kopelevich O.V., Sahling I.V., Vazyulya S.V., Glukhovets D.I., Sheberstov S.V., Burenkov V.I., Karalli P.G., Yush manova A.V. Biooptical characteristics of the seas washing the shores of the western half of Russia, according to satellite color scanners 1998–2017. Moskva, IO RAN, 2018. 140 p. (in Russian).

5. Li J., Matsuoka A., Hooker S.B., Maritorena S., Pang X., Babin M. A tuned ocean color algorithm for the Arctic Ocean: a solution for waters with high CDM content. Optics Express. 2023;31(23):38494–38512. doi:10.1364/OE.500340

6. Lewis K.M., Arrigo K.R. Ocean color algorithms for estimating chlorophyll a, CDOM absorption, and particle backscatter ing in the Arctic Ocean. Journal of Geophysical Research: Oceans. 2020;125(6): e2019JC015706. doi:10.1029/2019JC015706

7. Zatsepin A.G., Zavialov P.O., Kremenetskiy V.V., Poyarkov S.G., Soloviev D.M. The upper desalinated layer in the Kara Sea. Oceanology. 2010;50:657–667. doi:10.1134/S0001437010050036

8. Glukhovets D.I., Goldin Y.A. Surface desalinated layer distribution in the Kara Sea determined by shipboard and satel lite data. Oceanologia. 2020;62(3):364–373. doi:10.1016/j.oceano.2020.04.002

9. Osadchiev A, Zabudkina Z, Rogozhin V, Frey D, Gordey A, Spivak E, Salyuk A, Semiletov I, Sedakov R. Structure of the Ob-Yenisei plume in the Kara Sea shortly before autumn ice formation. Frontiers in Marine Science. 2023;10:1129331. doi:10.3389/fmars.2023.1129331

10. Burenkov V.I., Goldin Y.A., Artem’ev V.A., Sheberstov S.V. Optical characteristics of the Kara Sea derived from ship borne and satellite data. Oceanology. 2010;50:675–687. doi:10.1134/S000143701005005X

11. Kravchishina M.D., Klyuvitkin A.A., Novigatsky A.N., Glukhovets D.I., Shevchenko V.P., Belan B.D. Cruise 89 (First Leg) of the R/V Akademik Mstislav Keldysh: Climate Experiment in Interaction with the Tu-134 Optik Flying Labora tory. Oceanology. 2023;63:428–431. doi:10.1134/S0001437023030074

12. Pogosyan S.I., Durgaryan A.M., Konyuhov I.V., Chivkunova O.B., Merzlyak M.N. Absorption spectroscopy of mi croalgae, cyanobacteria, and dissolved organic matter: Measurements in an integrating sphere cavity. Oceanology. 2009;49:866–871. doi:10.1134/S0001437009060125

13. Glukhovets D.I., Sheberstov S.V., Kopelevich O.V., Zajceva A.F., Pogosyan S.I. Measurement of sea water absorption factor using integrating sphere. Light Engineering. 2018;26(1):120–126. doi:10.33383/2016–079

14. Artemiev V.A., Taskaev V.R., Grigorev A.V. Autonomous transparency meter PUM-200. Sovremennye Metody i Sredst va Okeanologicheskih Issledovanij (MSOI-2021). 2021:95–99 (in Russian).

15. Artemiev V.A., Burenkov V.I., Vortman M.I., Grigoriev A.V., Kopelevich O.V., Khrapko A.N. Sea-truth measurements of ocean color: A new floating spectroradiometer and its metrology. Oceanology. 2000;40:139–145.

16. Mobley C.D. Light and water: radiative transfer in natural waters. San Diego: Academic Press, 1994. 592 p.

17. Loisel H., Morel A. Light scattering and chlorophyll concentration in case 1 waters: A reexamination. Limnology and Oceanography. 1998;43(5):847–858. doi:10.4319/lo.1998.43.5.0847

18. Pope R.M., Fry E.S. Absorption spectrum (380–700 nm) of pure water II Integrating cavity measurements. Applied Op tics. 1997;36(33):8710. doi:10.1364/AO.36.008710

19. Röttgers R., McKee D., Utschig C. Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region. Optics Express. 2014;22(21):25093–25108. doi:10.1364/OE.22.025093

20. Morel A., Antoine D., Gentili B. Bidirectional reflectance of oceanic waters: accounting for Raman emission and vary ing particle scattering phase function. Applied Optics. 2002;41(30):6289. doi:10.1364/AO.41.006289

21. Demidov A.B., Kopelevich O.V., Mosharov S.A., Sheberstov S.V., Vazyulya S.V. Modelling Kara Sea phytoplankton primary production: Development and skill assessment of regional algorithms. Journal of Sea Research. 2017;125:1–17. doi:10.1016/j.seares.2017.05.004

22. Werdell P.J., Franz B.A., Bailey S.W., Feldman G.C., Boss E., Brando V.E., Dowell M., Hirata T., Lavender S.J., Lee Z.P., Loisel H., Maritorena S., Mélin F., Moore T.S., Smyth T.J., Antoine D., Devred E., d’Andon O.H.F., Mangin A. Generalized ocean color inversion model for retrieving marine inherent optical properties. Applied Optics. 2013;52(10):2019–2037. doi:10.1364/AO.52.002019

23. Bricaud A., Morel A., Babin M., Allali K., Claustre H. Variations of light absorption by suspended particles with chloro phyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. Journal of Geophysical Research. 1998;103: 31033–31044. doi:10.1029/98JC02712

24. Gordon H.R., McCluney W.R. Estimation of the depth of sunlight penetration in the sea for remote sensing. Applied Optics. 1975;14(2):413–416.

25. Gordon H.R., Clark D.K. Remote sensing optical properties of a stratified ocean: an improved interpretation. Applied Optics. 1980;19(20):3428–3430. doi:10.1364/AO.19.003428

26. Zaneveld J.R.V., Barnard A.H., Boss E. Theoretical derivation of the depth average of remotely sensed optical parame ters. Optics Express. 2005;13(22):9052–9061. doi:10.1364/OPEX.13.009052

27. Lipinskaya N.A., Salyuk P.A., Golik I.A. Variations and Depth of Formation of Submesoscale Eddy Structures in Sat ellite Ocean Color Data in the Southwestern Region of the Peter the Great Bay. Remote Sensing. 2023;15(23):5600. doi:10.3390/rs15235600


Review

For citations:


Deryagin D.N., Vazyulya S.V., Glukhovets D.I. Influence of the Kara Sea Surface Layer Parameters on the Accuracy of Chlorophyll-a Concentration Estimation by the Bio-optical Algorithms. Fundamental and Applied Hydrophysics. 2024;17(3):91-101. (In Russ.) https://doi.org/10.59887/2073-6673.2024.17(3)-8

Views: 81


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)