Preview

Fundamental and Applied Hydrophysics

Advanced search

Influence of the water temperature–phytoplankton feedback on the upper layer temperature of the Indian Ocean

https://doi.org/10.7868/S2073667321040067

Abstract

Two experiments with a regional Earth System Model (ESM) are performed. We discovered that in a simulation where light attenuation is calculated taking into account the water temperature–phytoplankton feedback the average sea surface temperature (SST) is lower over most of the tropical Indian ocean in comparison with the reference experiment in which a constant light attenuation coefficient equal to 0.06 m-1, typical in global ESM runs, is used. We also find that the strongest differences (more than 1 °C) in SST occur in the summer period and a cooling of subsurface layers and a rise of the thermocline are noted in the experiment with the above feedback. Thus, including the full water temperature–phytoplankton feedback with corresponding light attenuation coefficient generally lowers the SST and water temperature in subsurface layers of the Indian ocean, with strong implications for the ocean-atmosphere coupling and, therefore for the simulated regional climate.

About the Authors

D. V. Sein
Shirshov Institute of Oceanology, Russian Academy of Sciences; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research
Russian Federation

117997, Nahimovskiy prospekt, 36, Moscow

27570, Am Handelshafen 12, Bremerhaven, Germany



A. Yu. Dvornikov
Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

117997, Nahimovskiy prospekt, 36, Moscow



S. D. Martyanov
Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

117997, Nahimovskiy prospekt, 36, Moscow



W. Cabos
University of Alcala
Spain

28801, Alcalf de Henares, Square San Diego, Alcala



V. A. Ryabchenko
Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

117997, Nahimovskiy prospekt, 36, Moscow



M. Gröger
Leibniz Institute for Baltic Sea Research
Germany

D-18119, Seestrasse 15, Warnemünde, Rostock



A. K. Mishra
Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research
India

462066, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh Bhopal



P. Kumar
Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research
India

462066, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh Bhopal



V. A. Gorchakov
Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

117997, Nahimovskiy prospekt, 36, Moscow



References

1. Szabo S. et al. Making SDGs work for climate change hotspots. Environment: Science and Policy for Sustainable Development. 2016, 58, 6, P. 24–33. doi: 10.1080/00139157.2016.1209016

2. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.). IPCC, Geneva, Switzerland, 2014. 151 p.

3. Ryabchenko V.A., Gorchakov V.A., Fasham M.J.R. Seasonal dynamics and biological productivity in the Arabian Sea Euphotic Zone as simulated by a three-dimensional ecosystem model. Glob Biogeochem Cycles. 1998, 12, 3, 501–530.

4. Seitzinger S.P. et al. Global patterns of dissolved inorganic and particulate nitrogen inputs to coastal systems: Recent conditions and future projections. Estuaries. 2002, 25, 4, 640–655.

5. De T.K. et al. Phytoplankton abundance in relation to cultural eutrophication at the land-ocean boundary of Sunderbans. NE Coast of Bay of Bengal, India. Journal of Environmental Studies and Sciences. 2011, 1, 3, 169.

6. Choudhury A.K., Pal R. Phytoplankton and nutrient dynamics of shallow coastal stations at Bay of Bengal, Eastern Indian coast. Aquatic Ecology. 2010, 44, 1, 55–71.

7. Steinacher M. et al. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences. 2010, 7, 979–1005. doi: 10.5194/bg-7–979–2010

8. Fu W., Randerson J.T., Moore J.K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences. 2016, 13, 5151–5170. doi: 10.5194/bg-13–5151–2016

9. Nakamoto S. et al. Chlorophyll modulation of sea surface temperature in the Arabian Sea in a mixed-layer isopycnal general circulation model. Geophys. Res. Lett. 2000, 27, 6, 747–750. doi: 10.1029/1999GL002371

10. Nakamoto S. et al. Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model. Geophys. Res. Lett. 2001, 28, 10, 2021–2024. doi: 10.1029/2000GL012494

11. Oschlies A. Feedbacks of biotically induced radiative heating on upper-ocean heat budget, circulation, and biological production in a coupled ecosystem-circulation model. J. Geophys. Res. 2004, 109, C12031. doi: 10.1029/2004JC002430

12. Park J., Kug J., Seo H. et al. Impact of bio-physical feedbacks on the tropical climate in coupled and uncoupled GCMs. Clim. Dyn. 2014a, 43, 1811–1827. doi: 10.1007/s00382–013–2009–0

13. Lengaigne M., Menkes C., Aumont O. et al. Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model. Clim. Dyn. 2007, 28, 503–516. doi: 10.1007/s00382–006–0200–2

14. Giorgi F. Regional climate modeling: status and perspectives. J. Phys. IV France. 2006, 139, 101–118. doi: 10.1051/jp4:2006139008

15. Sein D.V. et al. Regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1. Description and validation. J. Adv. Model. Earth Syst. 2015, 7, 268–304. doi: 10.1002/2014MS000357

16. Manizza M., Le Quéré C., Watson A.J., Buitenhuis E.T. Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys. Res. Lett. 2005, 32, L05603. doi: 10.1029/2004GL020778

17. Park Jong-Yeon, Jong-Seong Kug, Young-Gyu Park. An exploratory modeling study on bio-physical processes associated with ENSO. Progr. Oceanogr. 2014, 124, 28–41. doi: 10.1016/j.pocean.2014.03.013

18. Marsland S.J. et al. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modell. 2002, 5, 2, 91–126.

19. Jungclaus J.H. et al. Characteristics of the ocean simulations in MPIOM, the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst. 2013, 5, 422–446. doi: 10.1002/jame.20023

20. Jacob D. A note to the simulation of the annual and interannual variability of the water budget over the Baltic Sea drainage basin. Meteorol. Atmos. Phys. 2001a, 77(1–4), 61–73.

21. Jacob D. et al. A comprehensive model intercomparison study investigating the water budget during the BALTEXPIDCAP period. Meteorol. Atmos. Phys. 2001b, 77(1–4), 19–43.

22. Maier-Reimer E., Kriest I., Segschneider J., Wetzel P. Technical description of the HAMburg Ocean Carbon Cycle model, version 5.1 (HAMOCC5.1), and of its interface to MPIOM / Reports on Earth System Science: Max Planck Institute for Meteorol, Hamburg, 2005.

23. Ilyina T., Six K.D., Segschneider J., Maier-Reimer E., Li H., Núñez-Riboni I. Global Ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. J. Adv. Model. Earth Syst. 2013, 5, 287–315. doi: 10.1029/2012MS000178

24. Hagemann S., Dumenil L. A parameterization of the lateral waterflow for the global scale. Clim. Dyn. 1998, 14, 17–31.

25. Jerlov N.G. Marine Optics. Amsterdam, Elsevier, 1976.

26. Paulson C.A., Simpson J.J. Irradiance Measurements in the Upper Ocean. J. Phys. Oceanogr. 1977, 7, 6, 952–956.

27. Gröger M., Maier-Reimer E., Mikolajewicz U., Moll A., Sein D. NW European shelf under climate warming: implications for open ocean — shelf exchange, primary production, and carbon absorption. Biogeosciences. 2013, 10, 3767–3792. doi: 10.5194/bg-10–3767–2013

28. Locarnini R.A. et al. World Ocean Atlas 2013, Volume 1: Temperature / S. Levitus, Ed., A. Mishonov. Technical Ed., NOAA Atlas NESDIS, 2013, 73, 40 p.

29. Deppenmeier A.-L., Haarsma R.J., Philippe L., Wilco H. The effect of vertical ocean mixing on the tropical Atlantic in a coupled global climate model. Clim. Dyn. 2020, 54(11–12), 5089–5109. doi: org/10.1007/s00382–020–05270-x

30. Anderson T.R., Ryabchenko V.A., Fasham M.J.R., Gorchakov V.A. Denitrification in the Arabian Sea: A 3D ecosystem modelling study. Deep Sea Res I: Oceanographic Research Papers. 2007, 54, 12, 2082–2119. doi: 10.1016/j.dsr.2007.09.005

31. NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Chlorophyll Data; 2018 Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA. doi: data/10.5067/ORBVIEW-2/SEAWIFS/L3M/CHL/2018

32. Copernicus Climate Change Service: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate Copernicus Climate Change Service Climate Data Store (CDS), URL: https://cds.climate.copernicus.eu/cdsapp#!/home (date of access: 05.03.2020).

33. Pacanowski R.C., Philander S.G.H. Parameterization of vertical mixing in numerical-models of tropical oceans. J. Phys. Oceanogr. 1981, 11, 1443–1451.

34. Liu L., Feng L., Yu W. et al. The distribution and variability of simulated chlorophyll concentration over the tropical Indian Ocean from five CMIP5 models. J. Ocean Univ. China. 2013, 12, 253–259. doi: 10.1007/s11802–013–2168-y

35. Smith W.O., Sakshaug E. Polar phytoplankton. Polar Oceanography, part B: Chemistry, Biology, and Geology’ / (Walker O. Smith, Jr., ed.). Academic Press. 1990, 477–525. doi: 10.1016/C2009–0–21623–0

36. NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Terra Chlorophyll Data; 2018 Reprocessing. NASA OB.DAAC, Greenbelt, MD, USA. doi: 10.5067/TERRA/MODIS/L3B/CHL/2018

37. Gröger M., Dieterich C., Meier Markus HEM, Schimanke S. Thermal air-sea coupling in hindcast simulations for the North Sea and Baltic Sea on the NW European shelf. Tellus. 2015 A, 67, 26911. doi: 10.3402/tellusa.v67.26911

38. Ramesh K.V., Krishnan R. Coupling of mixed layer processes and thermocline variations in the Arabian Sea. J. Geophys. Res. 2005, 110, C05005. doi: 10.1029/2004JC002515

39. Park J., Kug J. Marine biological feedback associated with Indian Ocean Dipole in a coupled ocean/biogeochemical model. Clim. Dyn. 2014, 42, 329–343. doi: 10.1007/s00382–012–1640–5

40. Sein D.V., Gröger M., Cabos W. et al. Regionally coupled atmosphere–ocean–marine biogeochemistry model ROM: 2. Studying the climate change signal in the North Atlantic and Europe. J. Adv. Model. Earth Syst. 2020, 12, 8. doi: 10.1029/2019MS001646

41. Zhu S., Remedio A.R.C., Sein D.V. et al. Added value of the regionally coupled model ROM in the East Asian summer monsoon modeling. Theor. Appl. Climatol. 2020, 140, 375–387. doi: 10.1007/s00704–020–03093–8

42. Cabos W., Sein D.V., Pinto J.G. et al. The South Atlantic Anticyclone as a key player for the representation of the tropical Atlantic climate in coupled climate models. Clim. Dyn. 2017, 48, 4051–4069. doi: 10.1007/s00382–016–3319–9

43. Cabos W., Sein D.V., Durán-Quesada A. et al. Dynamical downscaling of historical climate over CORDEX Central America domain with a regionally coupled atmosphere–ocean model. Clim. Dyn. 2019, 52, 4305–4328. doi: 10.1007/s00382–018–4381–2

44. Paeth H., Paxian A., Sein D.V. et al. Decadal and multi-year predictability of the West African monsoon and the role of dynamical downscaling. Meteorologische Zeitschrift. 2017, 26, 4, 363–377. doi: 10.1127/metz/2017/0811

45. Paxian A., Sein D.V., Panitz H.J. et al. Bias reduction in decadal predictions of West African monsoon rainfall using regional climate models. J. Geophys. Res. Atmos. 2016, 121, 4, 1715–1735. doi: 10.1002/2015JD024143

46. Paulsen H., Ilyina T., Jungclaus J.H., Six K.D., Stemmler I. Light absorption by marine cyanobacteria affects tropical climate mean state and variability. Earth Syst. Dyn. 2018, 9, 1283–1300. doi: 10.5194/esd-9–1283–2018

47. Rochford P.A., Kara A.B., Wallcraft A.J., Arnone R.A. Importance of solar subsurface heating in ocean general circulation models. J. Geophys. Res. 2001, 106, 30923–30938.

48. Pefanis V. et al. Amplified Arctic surface warming and sea ice loss due to phytoplankton and colored dissolved material. Geophys Res Lett. 2020, 47, e2020GL088795. doi: 10.1029/2020GL088795


Review

For citations:


Sein D.V., Dvornikov A.Yu., Martyanov S.D., Cabos W., Ryabchenko V.A., Gröger M., Mishra A.K., Kumar P., Gorchakov V.A. Influence of the water temperature–phytoplankton feedback on the upper layer temperature of the Indian Ocean. Fundamental and Applied Hydrophysics. 2021;14(4):64-76. (In Russ.) https://doi.org/10.7868/S2073667321040067

Views: 173


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)