Variability of saltwater flow in the Hoburg Channel, Baltic Sea: in situ measurements vs NEMO modelling
https://doi.org/10.59887/2073-6673.2024.17(2)-8
Abstract
A half-year long time series of the bottom layer velocity measured in situ in the Hoburg Channel displayed seven-day oscillations of the saltwater flow. The flow was characterized by alterations of surges with the increase of northward velocity to approximately 0.2–0.3 m/s and blockages when the northward velocity vanishes or becomes small negative. The measured time series of the northward velocity component was surprisingly highly correlated with the simulation by NEMO reanalysis at the correlation coefficient of 0.82 and the 95 % confidence limits of 0.76–0.86. The seven-day oscillations were accompanied by almost synchronous oscillations of the southeast component of the wind vector. It can be considered convincing evidence that the seven-day oscillations in the saltwater flow were caused by wind forcing.
Keywords
About the Authors
V. T. PakaRussian Federation
Paka, Vadim T., Chief Researcher Scientist, Prof., Dr. Sci. (Phys.-Math.)
36 Nakhimovsky Prosp., Moscow 117997
WoS ResearcherID I‑6090-2016
Scopus Author ID7003547709
V. M. Zhurbas
Russian Federation
Zhurbas, Victor M., Chief Researcher Scientist, Prof., Dr. Sci. (Phys.-Math.)
36 Nakhimovsky Prosp., Moscow 117997
WoS ResearcherID A‑7341-2009
Scopus Author ID6603968937
M. N. Golenko
Russian Federation
GOLENKO, Mariya N., Senior Researcher Scientist, Cand.Sci. (Phys.-Math.)
36 Nakhimovsky Prosp., Moscow 117997
WoS ResearcherID K‑1544-2016
Scopus Author ID24080316600
A. O. Korzh
Russian Federation
KORZH, Andrey O., Lead Engineer
36 Nakhimovsky Prosp., Moscow 117997
WoS ResearcherID L‑3192-2016
Scopus Author ID15080985900
A. A. Kondrashov
Russian Federation
Kondrashov, Aleksey A., Junior Researcher Scientist
36 Nakhimovsky Prosp., Moscow 117997
WoS ResearcherID S‑2848-2016
Scopus Author ID36657225800
References
1. Matthäus W., Frank H. Characteristics of major Baltic inflows — a statistical analysis // Continental Shelf Research. 1992. Vol. 12. P. 1375–1400. doi:10.1016/0278-4343(92)90060-W
2. Lass H.U., Matthäus W. On temporal wind variations forcing salt water inflows into the Baltic Sea // Tellus. 1996. Vol. 48A. P. 663–671. doi:10.1034/j.1600-0870.1996.t01-4-00005.x
3. Krauss W., Brügge B. Wind-produced water exchange between the deep basins of the Baltic Sea // Journal of Physical Oceanography. 1991. Vol. 21. P. 373–384. doi:10.1175/1520-0485(1991)021<0373: WPWEBT>2.0.CO;2
4. Lehmann A., Lorenz P., Jacob D. Modelling the exceptional Baltic Sea inflow events in 2002–2003 // Geophysical Research Letters. 2004. Vol. 31. No. 21. Article N L21308. doi:10.1029/2004GL020830
5. Lehmann A., Myrberg K., Post P. et al. Salinity dynamics of the Baltic Sea // Earth System Dynamics. 2022. Vol. 13. P. 373–392. doi:10.5194/esd‑13-373-2022
6. Meier M., Döscher R., Broman B., Piechura J. The major Baltic inflow in January 2003 and preconditioning by smaller inflows in summer/autumn 2002: A model study // Oceanologia. 2004. Vol. 46, N 4. P. 557–579.
7. Meier M., Feistel R., Piechura J. et al. Baltic Sea deep water: A brief review of present knowledge from observations and models // Oceanologia. 2006. Vol. 48(S). P. 133–164.
8. Burchard H., Janssen F., Bolding K., Umlauf L., Rennau H. Model simulations of dense bottom currents in the Western Baltic Sea // Continental Shelf Research. 2009. Vol. 29, N 1. P. 205–220. doi:10.1016/j.csr.2007.09.010
9. Rak D. The inflow in the Baltic Proper as recorded in January–February 2015 // Oceanologia. 2016. Vol. 58, N 3. P. 241–247. doi:10.1016/j.oceano.2016.04.001
10. Mohrholz V. Major Baltic inflow statistics — Revised // Frontiers in Marine Science. 2018. Vol. 5. Article N 384. doi:10.3389/fmars.2018.00384
11. Zhurbas V., Elken J., Paka V. et al. Structure of unsteady overflow in the Słupsk Furrow of the Baltic Sea // Journal of Geophysical Research: Oceans. 2012. Vol. 117. C04027. doi:10.1029/2011JC007284
12. Zhurbas V., Väli G., Golenko M., Paka V. Variability of bottom friction velocity along the inflow water pathway in the Baltic Sea // Journal of Marine Systems. 2018. Vol. 184. P. 50–58. doi:10.1016/j.jmarsys.2018.04.008
13. Zhurbas V., Golenko M., Paka V., Korzh A. Wind-driven salinity tongue migration in the Gulf of Finland according to NEMO and ERA5 reanalyses // Journal of Marine Systems. 2024. Vol. 242. Article N 103932. doi:10.1016/j.jmarsys.2023.103932
14. Paka V.T., Zhurbas V.M., Golenko M.N. et al. Innovative Closely Spaced Profiling and Current Velocity Measurements in the Southern Baltic Sea in 2016–2018 With Special Reference to the Bottom Layer // Frontiers in Earth Science. 2019. Vol. 7. Article N 111. doi:10.3389/feart.2019.00111
15. Zhurbas V., Väli G. Wind-controlled transport of saltwater in the southeastern Baltic Sea: A model study // Frontiers in Marine Science. 2022. Vol. 9. Article N835656. doi:10.3389/fmars.2022.835656
16. Golenko M., Paka V., Zhurbas V., Korzh A., Kondrashov A. Intermediate plumes of low oxygen in the southeastern Baltic Sea // Oceanologia. 2023. Vol. 65, N 1. P. 100–116. doi:10.1016/j.oceano.2021.12.003
17. Bulczak A., Rak D., Schmidt B., Beldowski J. Observations of near-bottom currents in Bornholm Basin, Słupsk Furrow and Gdansk Deep // Deep-Sea Research II. 2015. Vol. 128. P. 96–113. doi:10.1016/j.dsr2.2015.02.021
18. Hagen E., Plüschke G. Daily current series in the Deep Eastern Gotland Basin (1993–2008) / In: Meereswiss. Ber., Warnemünde, 75 (2009) — Marine Science Reports, N 75. 2009. doi:10.12754/msr‑2009-0075
19. Kärnä T. Ljungemyr P., Falahat S. et al. Nemo-Nordic 2.0: operational marine forecast model for the Baltic Sea // Geoscience Model Development. 2021. Vol. 14. P. 5731–5749. doi:10.5194/gmd‑14-5731-2021
20. Large W.G., Pond S. Open ocean momentum flux measurements in moderate to strong winds // Journal of Physical Oceanography. 1981. Vol. 11. N 3. P. 324–336. doi:10.1175/1520-0485(1981)011<0324: OOMFMI>2.0.CO;2
Review
For citations:
Paka V.T., Zhurbas V.M., Golenko M.N., Korzh A.O., Kondrashov A.A. Variability of saltwater flow in the Hoburg Channel, Baltic Sea: in situ measurements vs NEMO modelling. Fundamental and Applied Hydrophysics. 2024;17(2):94-102. https://doi.org/10.59887/2073-6673.2024.17(2)-8