Reproduction of the Current Climatic State of the Lake Ladoga Ecosystem
https://doi.org/10.59887/2073-6673.2024.17(2)-5
Abstract
A three-dimensional ecohydrodynamic model of Lake Ladoga based on the St. Petersburg Baltic Eutrophication Model (SPBEM) is proposed. Unlike existing models of the Lake Ladoga ecosystem, the proposed model is implemented on a high-resolution spherical grid (horizontal grid size ≈1 km), contains a benthic layer module and describes the cycles of nitrogen and phosphorus in the water column and bottom sediments. A run of the seasonal and interannual variability of the state of Lake Ladoga in the period 1979–2018 was carried out when setting as forcing the atmospheric influence and runoff of rivers flowing into Lake Ladoga for the hydrothermodynamic module and the supply of nutrients from the atmosphere and from land for the biogeochemical module. A comparison of the results of calculating the current climatic state of Lake Ladoga with the available satellite andexpeditionary observation data showed that the model correctly reproduces the climatic seasonal variation of the surface temperature field, its vertical distribution, average values and range of changes in the main characteristics of the lake’s ecosystem. The proposed model can be used to study the influence of external natural and anthropogenic factors on biogeochemical processes and the functioning of the Lake Ladoga ecosystem.
Keywords
About the Authors
A. V. IsaevRussian Federation
36 Nakhimovsky Prosp., Moscow 117997
V. A. Ryabchenko
Russian Federation
36 Nakhimovsky Prosp., Moscow 117997
A. A. Konik
Russian Federation
36 Nakhimovsky Prosp., Moscow 117997
References
1. Di Toro D.M., Connolly J.P. Mathematical models of water quality in large lakes. Lake Erie eutrophication of waters: Monitoring. Assessment and control. Paris: OECD, 1982, 154 p.
2. Straskraba M., Gnauck A. Freshwater ecosystems. Modelling and simulation. Elsevier Science Publishers, Amsterdam, 1985, 309 p.
3. Mooij W.M., Trolle D., Arhonditsis G. et al. Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquatic Ecology. 2010, 44, 3, 633–667. doi:10.1007/s10452-010-9339-3
4. Zhang W., Watson S.B., Rao Y.R., et al. A linked hydrodynamic, water quality and algal biomass model for a large, multibasin lake: A working management tool. Ecological Modelling. 2013, 269, 37–50. doi:10.1016/j.ecolmodel.2013.08.018
5. Scavia D., DePinto J.V., Bertani I. A multi-model approach to evaluating target phosphorus loads for Lake Erie. Journal of Great Lakes Research. 2016, 42, 6, 1139–1150. doi:10.1016/j.jglr.2016.09.007
6. Vinçon-Leite B., Casenave C. Modelling eutrophication in lake ecosystems: A review. Science of the Total Environment. 2019, 651, 2985–3001. doi:10.1016/j.scitotenv.2018.09.139
7. Ménesguen A., Lacroix G. Modelling the marine eutrophication: a review. Science of the Total Environment. 2018, 636, 339–354. doi:10.1016/j.scitotenv.2018.04.183
8. Menshutkin V.V., Vorobieva O.N. A model of the ecological system of Lake Ladoga. The current state of the ecosystem of Lake Ladoga. Ed. N.A. Petrova, G.F. Raspletina. Leningrad, Nauka, 1987, 187–200 (In Russian).
9. Rukhovets L.A., Astrakhantsev G.P., Menshutkin V.V., et al. Development of Lake Ladoga ecosystem models: modeling of the phytoplankton succession in the eutrophication process. I. Ecological Modelling. 2003, 165, 1, 49–77. doi:10.1016/S0304-3800(03)00061-9
10. Astrakhantsev G.P., Menshutkin V.V., Petrova L.A., et.al. Modeling ecosystems of large stratified lakes. SPb., Nauka, 2003, 363 p. (In Russian).
11. Menshutkin V.V., Astrakhantsev G.P., Yegorova N.B., et al. Mathematical modelling of the evolution and current conditions of the Ladoga Lake ecosystem. Ecological Modelling. 1998, 107, 1–24. doi:10.1016/S0304-3800(97)00184-1
12. Rukhovets L., Filatov N. Ladoga and Onego — Great European Lakes: Observations and modeling. Berlin Heidelberg, Springer-Verlag, 2010. doi:10.1007/978-3-540-68145-8
13. Current state and problems of anthropogenic transformation of the ecosystem of Lake Ladoga in a changing climate / Ed. by S.A. Kondratev, Sh.R. Pozdniakov, V.A. Rumiantsev, Moskva, RAS, 2021. 640 p. (In Russian).
14. Savchuk O.P. Nutrient biogeochemical cycles in the Gulf of Riga: scaling up field studies with a mathematical model. Journal of Marine Systems. 2002, 32, 4, 253–280. doi:10.1016/S0924-7963(02)00039-8
15. Isaev A., Vladimirova O., Eremina T., et al. Accounting for dissolved organic nutrients in an SPBEM‐2 model: Validation and verification. Water. 2020, 12, 5, 1307. doi:10.3390/w12051307
16. Ryabchenkoоd future climate. Oceanology. 2016, 56, 1, 36–45. doi:10.1134/S0001437016010161
17. Meier H.E.M., Edman M.K., Eilola K.J., et al. Assessment of eutrophication abatement scenarios for the Baltic Sea by multi-model ensemble simulations. Frontiers in Marine Science. 2018, 5, 440. doi:10.3389/fmars.2018.00440
18. Meier H.E.M., Edman M., Eiola K., et al. Assessment of uncertainties in scenario simulations of biogeochemical cycles in the Baltic Sea. Frontiers in Marine Science. 2019, 6, 46. doi:10.3389/fmars.2019.00046
19. Isaev A.оake Onego Ecosystem, 1985–2015. Part I: Long-Term Dynamics and Spatial Distribution. Fundamental and Applied Hydrophysics. 2022, 15, 2, 76–97. doi:10.48612/fpg/e1m2-63b5-rhvg
20. Savchuk O.P., Isaev A.V., Filatov N.N. Three-Dimensional Hindcast of Nitrogen and Phosphorus Biogeochemical Dynamics in Lake Onego Ecosystem, 1985–2015. Part II: Seasonal Dynamics and Spatial Features; Integral Fluxes. Fundamental and Applied Hydrophysics. 2022, 15, 2, 98–109. doi:10.48612/fpg/9mg5-run6-4zr8
21. Ladoga / Ed. by V.A. Rumiantsev, S.A. Kondratev. SPb., Nestor-History, 2013, 468 p. (In Russian).
22. Patten B.S. Mathematical models of plankton production. Internationale Revue der gesamten Hydrobiologie und Hydrographie. 1968, 53, 357–408.
23. Modeling of Marine Systems / Ed. by Nihoul, J.C.J., Elsevier, 1975, 272 p.
24. Modeling the processes of transfer and transformation of matter in the sea / Ed. by Iu.N. Sergeev. Leningrad State University, 1979, 292 p. (In Russian).
25. Savchuk O., Wulff F. A model of the biogeochemical cycles of nitrogen and phosphorus in the Baltic. A systems analysis of the Baltic Sea ed. Wulff F.V., Rahm L.A., Larsson P. Berlin, Heidelberg, Springer, 2001, 373–415. doi:10.1007/978-3-662-04453-7_14
26. Marshall J., Adcrof A., Hill C., et al. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research: Oceans. 1997, 102(C3), 5753–5766. doi:10.1029/96JC02775
27. Marshall J., Hill C., Perelman L., et al. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research: Oceans. 1997, 102(C3), 5733–5752. doi:10.1029/96JC02776
28. Pilcher D.J., McKinley G.A., Bootsma H.A., et al. Physical and biogeochemical mechanisms of internal carbon cycling in Lake Michigan. Journal of Geophysical Research: Oceans. 2015, 120, 3, 2112–2128. doi:10.1002/2014JC010594
29. Gloege L., McKinley G.A., Mooney R.J., et al. Lake hydrodynamics intensify the potential impact of watershed pollutants on coastal ecosystem services. Environmental Research Letters. IOP Publishing. 2020, 15, 6, 064028. doi:10.1088/1748-9326/ab7f62
30. Bennington V., McKinley G.A., Kimura N., et al. General circulation of Lake Superior: Mean, variability, and trends from 1979 to 2006. Journal of Geophysical Research: Oceans. 2010, 115, C12015. doi:10.1029/2010JC006261
31. Gaspar P., Grégoris Y., Lefevre J.-M. A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and long-term upper ocean study site. Journal of Geophysical Research. 1990, 95(C9), 16179. doi:10.1029/JC095iC09p16179
32. Smagorinsky J., Manade S., Holloway J.I. Numerical results from a ninelevel general circulation model of the atmosphere. Monthly Weather Review, 1965, 93, 727–768.
33. Kondratev S.A., Efremova L.V., Raspletina G.F. et.al. Assessment of external load on Lake Ladoga. Environmental Chemistry. 1997, 6(2), 73–84 (In Russian).
34. Kondratev S. A formation of external load on reservoirs: modeling problems. / Ed. by Kondratev S.A., SPb., Nauka, 2007, 255 p. (In Russian).
35. Lozovik P.A., Galakhina N.Y., Kravchenko I.Y. Current status of water bodies of Karelia as a result of natural, climatic and anthropogenic factors’ impact. Water Sector of Russia: Problems, Technologies, Management. 2017, 3, 24–39 (In Russian).
36. Efremova L.V. Assessment of the atmospheric component of the external load on the Gulf of Finland. Proceedings “Ecological problems of the North of the European territory of Russia”, Apatity, 1996, 149–150 (In Russian).
37. Eilola K., Gustafsson B.G., Kuznetsov I., et. al. Evaluation of biogeochemical cycles in an ensemble of three state-of-theart numerical models of the Baltic Sea. Journal of Marine Systems. 2011, 88, 267–284. doi:10.1016/j.jmarsys.2011.05.004
Review
For citations:
Isaev A.V., Ryabchenko V.A., Konik A.A. Reproduction of the Current Climatic State of the Lake Ladoga Ecosystem. Fundamental and Applied Hydrophysics. 2024;17(2):50-65. https://doi.org/10.59887/2073-6673.2024.17(2)-5