Preview

Fundamental and Applied Hydrophysics

Advanced search

Spatial and temporal variability of the Polar Frontal Zone characteristics in the Barents Sea in the first two decades of the XXI century

https://doi.org/10.7868/S2073667321040043

Abstract

The article considers the spatial and temporal variability of the Polar Frontal Zone (PFZ) characteristics in the Barents Sea during the warm season from 2002 to 2020. In addition, the occurrence of small eddy structures in the PFZ region in different years is investigated, and the relationship of the characteristics of the frontal zone with global atmospheric processes is described. The position and characteristics of the PFZ were derived from satellite measurements using the cluster analysis method. Eddy structures in the PFZ region were detected from images of Envisat Asar and Sentinel-1A/B synthetic aperture radars. The NAO, EA, EA/WR and SCAND indices were used to assess the influence of atmospheric processes on the PFZ properties. It was found that the intra-annual values of temperature and salinity gradients in the PFZ region remained stable during the warm season and reached 0.05 °C/km and 0.02 %/km, respectively. The variability of the interannual estimates of the PFZ properties ranged from 0.02 °C/km to 0.08 °C/km in temperature, from 0.01 to 0.03 %/km in salinity, and from 120,000 to 425,000 km2 in area. The maximum monthly mean values of the PFZ area were observed in 2007, while the minimum — in 2003. The obtained results clearly showed that the intensity of the PFZ decreased after 2010, which is presumably related to the “Atlantification” of the Barents Sea. The maximum number of small eddy structures in the PFZ region was identified in 2009. It is shown that the SCAND index for the previous winter season can be used as a predictor for predicting the characteristics of the PFZ in the summer period.

About the Authors

A. A. Konik
Shirshov Institute of Oceanology, Russian Academy of Sciences; St. Petersburg State University
Russian Federation

117997, Nahimovskiy prospekt, 36, Moscow

199034, 7–9, Universitetskaya Nab., St. Petersburg



A. V. Zimin
Shirshov Institute of Oceanology, Russian Academy of Sciences; St. Petersburg State University
Russian Federation

117997, Nahimovskiy prospekt, 36, Moscow

199034, 7–9, Universitetskaya Nab., St. Petersburg



I. E. Kozlov
Marine Hydrophysical Institute, Russian Academy of Sciences
Russian Federation

299011, Kapitanskaya Str., 2, Sevastopol



References

1. Trofimov A.G., Karsakov A.L., Ivshin V.A. Climate changes in the Barents Sea over the last half century. Trudy VNIRO. 2018, 173, 79–91 (in Russian).

2. Feltham D. Arctic Sea ice reduction: the evidence, models and impacts. Philos Trans. R. Soc. A Math. Phys. Eng. Sci.2015, 373, 2045, 20140171. doi: 10.1098/rsta.2014.0171

3. Årthun M., Eldevik T., Smedsrud L.H., Skagseth Ø., Ingvaldsen R.B. Quantifying the Influence of Atlantic Heat on Barents Sea Ice Variability and Retreat*. J. Climate. 2012, 25, 13, 4736–4743. doi: 10.1175/jcli-d-11–00466.1

4. Barton B.I., Lenn Y.D., Lique C. Observed Atlantification of the Barents Sea causes the Polar Front to limit the expansion of winter sea ice. J. Phys. Oceanogr. 2018, 48, 8, 1849–1866. doi: 10.1175/jpo-d-18–0003.1

5. Atadzhanova O.A., Zimin A.V., Svergun E.I., Konik A.A. Sub-Mesoscale Eddy structures and frontal dynamics in the Barents Sea. Phys Oceanogr. 2018, 34, 3, 237–246. doi: 10.22449/1573–160X-2018–3–220–228

6. Kostjanoj A.G., Lebedev I.A., Novikov V.B., Rodionov V.B. On eddies formation in the Polar frontal zone of the Barents Sea. Trudy AANII. 1992, 426, 19–32 (in Russian).

7. Kozlov I.E., Artamonova A.V., Manucharyan G.E., Kubryakov A.A. Eddies in the Western Arctic Ocean from spaceborne SAR observations over open ocean and marginal ice zones. J. Geophys. Res.: Oceans. 2019, 124, 9, 6601–6616. doi: 10.1029/2019jc015113

8. Rodionov A.A., Romanenkov D.A., Zimin A.V., Kozlov I.E., Shapron B. Submesoscale processes and dynamics in the White Sea. State of the art and future research. Fundam. Prikl. Gidrofiz. 2014, 7, 3, 29–41 (in Russian).

9. Ozhigin V.K., Ivshin V.A., Trofimov A.G., Krasakov A.L., Anciferov M. Ju. The Barents Sea Water: structure, circulation, variability. Murmansk, PINRO, 2016. 260 p. (in Russian).

10. Oziel L., Sirven J., Gascard J.C. The Barents Sea frontal zones and water masses variability (1980–2011). Ocean Sci. 2016, 12, 1, 169–184. doi: 10.5194/os-12–169–2016

11. Dobrovol’skij A.D., Zalogin B.S. Seas of the USSR. Moscow, MSU, 1982. 192 p. (in Russian).

12. Chvilev S.V. Frontal zones of the Barents Sea. Meteorologija i Gidrologija. 1991, 11, 103–108 (in Russian).

13. Harris C.L., Pluedemann A.J., Gawarkiewich G.G. Water mass distribution and polar front structure in the western Barents Sea. J. Geophys. Res: Oceans. 1998, 103, C2, 2905–2917. doi: 10.1029/97jc02790

14. Johannessen O.M., Foster L.A. A note on the topographically controlled oceanic polar front in the Barents Sea. J. Geophys. Res. 1978, 83, C9, 4567–4571. doi: 10.1029/jc083ic09p04567

15. Reynolds R.W., Rayner N.A., Smith T.M., Stokes D.C., Wang W. An improved in situ and satellite SST analysis for climate. J. Climate. 2002, 15, 1609–1625.

16. Parsons A.R., Bourke R.H., Muench R.D., Chiu C.— S., Lynch J.F., Miller J.H., Plueddemann A.J., Pawlowicz R. The Barents Sea polar front in summer. J. Geophys. Res. 1996, 101, C6, 14201–14221. doi: 10.1029/96jc00119

17. Ivshin V.A., Trofimov A.G., Titov O.V. Barents Sea thermal frontal zones in 1960–2017: variability, weakening, shifting. ICES J. Mar. Sci. 2019, 76, i3—i9. doi: 10.1093/icesjms/fsz159

18. Våge S., Basedow S.L., Tande K.S., Zhou M. Physical structure of the Barents Sea Polar Front near Storbanken in August 2007. J. Mar. Syst. 2014, 130, 256–262. doi: 10.1016/j.jmarsys.2011.11.019

19. Fer I., Drinkwater K. Mixing in the Barents Sea Polar Front near Hopen in spring. J. Mar. Syst. 2014, 130, 206–218. doi: 10.1016/j.jmarsys.2012.01.005

20. Konik A.A., Kozlov I.E., Zimin A.V., Atadzhanova O.A. Satellite observations of eddies and frontal zones in the Barents Sea during years of different ice cover properties. Sovr. Probl. DZZ Kosm. 2020, 17, 5, 191–201 (in Russian). doi: 10.21046/2070–7401–2020–17–5–191–201

21. Artamonov Ju.V., Skripaleva V.A., Fedirko A.V. Seasonal Variability of Temperature Fronts on the Barents Sea Surface. Russ. Meteorol. Hydrol. 2019, 44, 53–61doi: 10.3103/S1068373919010060

22. Zimin A.V., Atadzhanova O.A., Konik A.A., Gordeeva S.M. Comparison of hydrography observations with data of global products in the Barents Sea. Fundam. Prikl. Gidrofiz. 2020, 13, 4, 66–77 (in Russian). doi: 10.7868/S2073667320040061

23. Fedorov K.N. The physical nature and structure of oceanic fronts. Leningrad, Gidrometeoizdat, 1983. 296 p. (in Russian).

24. Bardin M. Ju., Platova T.A., Samohina O.F. Specific features of variability of cyclone activity in northern extratropics associated with leading atmospheric circulation modes in atlantic-european sector. Fundamental and Applied Climatology. 2015, 2, 14–40 (in Russian).

25. Zolotokrylin A.N., Titkova T.B., Mihajlov A. Ju. Climatic variations of the Arctic front and the Barents Sea ice cover in winter time. Led i Sneg. 2014, 54, 1, 85–90 (in Russian).

26. Vajnovskij P.A., Malinin V.N. Methods of processing and analysis of oceanological information. Multidimensional analysis. Study guide. St. Petersburg, RGGMI, 1992. 96 p. (in Russian).

27. Ikeda M., Johannessen J.A., Lygre K., Sandven S. A process study of mesoscale meandres and eddies in the Norwegian Coastal Current. J. Geophys. Res. 1989, 19, 1, 20–35. doi: 10.1175/1520–0485(1989)019<0020: APSOMM>2.0.CO;2

28. Manucharyan G.E., Timmermans M.L. Generation and separation of mesoscale eddies from surface ocean fronts. J. Phys. Oceanogr. 2014, 43, 12, 2545–2562. doi: 10.1175/jpo-d-13–094.1

29. Atadzhanova O.A., Zimin A.V., Romanenkov D.A., Kozlov I.E. Satellite radar observations of small eddies in the White, Barents and Kara Seas. Phys. Oceanogr. 2017, 2, 75–83. doi: 10.22449/1573–160X-2017–2–75–83

30. Alekseev G.V., Glok N.I., Smirnov A.V., Vyazilova A.E. The influence of the North Atlantic on climate variations in the Barents Sea and their predictability. Russ. Meteorol. Hydrol. 2016, 41, 8, 544–558. doi: 10.3103/S1068373916080045

31. Schlichtholz P., Houssais M.N. Forcing of oceanic heat anomalies by air–sea interactions in the Nordic seas area. J. Geophys. Res. 2011, 116, C01006. doi: 10.1029/2009jc005944

32. NASA’s OceanColor Web URL: http://oceancolor.gsfc.nasa.gov (date of access: 04.06.2021).

33. Li Na, Li Bingrui, Lei Ruibo, Li Qun. Comparison of summer Arctic Sea ice surface temperatures from in situ and MODIS measurements. Acta Oceanologica Sinica. 2020, 9, 39, 18–24. doi: 10.1007/s13131–020–1644–7

34. Liu Y., Minnett P.J. Sampling errors in satellite–derived infrared sea–surface temperatures. Part I: Global and regional MODIS fields. Remote Sens. Environ. 2016, 177, 48–64. doi: 10.1016/j.rse.2016.02.026

35. The Physical Oceanography Distributed Active Archive Center. URL: https://podaac.jpl.nasa.gov (date of access: 04.06.2021).

36. Meissner T., Wentz F.J., Le Vine D.M. The Salinity Retrieval Algorithms for the NASA Aquarius Version 5 and SMAP Version 3 Releases. Remote Sens. 2018, 10, 1121. doi: 10.3390/rs10071121

37. Ozhigin V.K. Thermal frontal zones of the Barents Sea and features of distribution of commercial fish aggregations. Voprosy Promyslovoj Okeanologii Severnogo Bassejna: sb. nauch. tr. PINRO, Murmansk, 1989, 104–117 (in Russian).

38. Gordeeva S.M., Malinin V.N. Large-scale variability of the southern subtropical front in the south-eastern part Pacific Ocean. Uchenye Zapiski RGGMU. 2006, 2, 160–169 (in Russian).

39. Konik A.A., Zimin A.V., Atadzhanova O.A. Quantitative estimations of the variability of characteristics of the temperature of the sea surface in the front of the frontal zone of the Kara Sea. Fundam Prikl Gidrofiz. 2019, 12, 1, 54–61 (in Russian). doi: 10.7868/S2073667319010076

40. Copernicus Marine Environment Monitoring Service. GLOBAL OCEAN WIND L4 REPROCESSED MONTHLY MEAN OBSERVATIONS. URL: https://resources.marine.copernicus.eu (date of access: 04.06.2021).

41. Climate Prediction Center. URL: http://www.cpc.ncep.noaa.gov (date of access: 04.06.2021).

42. Girdjuk G.V., Dzhenjuk S.L., Zykova G.G., Terziev F.S. Hydrometeorology and hydrochemistry of the seas of the USSR. V. 1. The Barents Sea. Issue 1. Hydrometeorological conditions. Leningrad, Gidrometeoizdat, 1990. 280 p. (in Russian).

43. Parsons A.R., Bourke R.H., Muench R.D., Chiu C.— S., Lynch J.F., Miller J.H., Plueddeman A.J., Pawlowicz R. The Barents Sea Polar Front in summer. J. Geophys. Res: Oceans. 1996, 101, C6, 14201–14221. doi: 10.1029/96jc00119

44. Sokolov A.A., Gordeeva S.M. Change of heat advection to the Barents Sea. Rossijskaja Arktika. 2019, 4, 34–44 (in Russian).

45. Timmermans M.L., Labe Z. Arctic Report Card 2020: Sea Surface Temperature, NOAA Arctic Report Card 2020. 2020, 1–5. doi: 10.25923/v0fs-m920

46. Drinkwater K.F., Mueter F., Friedland K.D., Taylor M., Hunt G.L., Hare J., Melle W. Recent climate forcing and physical oceanographic changes in Northern Hemisphere regions: A review and comparison of four marine ecosystems. Progr. Oceanogr. 2009, 81, 1–4, 10–28. doi: 10.1016/j.pocean.2009.04.003

47. Surkova G.V., Romanenko V.A. Barents Sea: seasonal and long-term variability of energy exchange with atmospheric. Proc Conf “Morja Rossii: issledovanie beregovoj i shel’fovyh zon”. Sevastopol’, 21–25 September 2020. Sevastopol, MGI, 2020. 187–188 (in Russian).

48. Popova V.V. Contribution of ice cover anomalies in the Barents and Kara Seas to the circulation and temperature regimes of Northern Eurasia since the mid-1990s. Led i Sneg. 2020, 60, 3, 409–422 (in Russian). doi: 10.31857/S2076673420030048

49. Rodriguez–Puebla C., Encinas A.H., Nieto S., Garmendia J. Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula. Int. J. Climatol. 1998, 18, 3, 299–316. doi: 10.1002/(sici)1097–0088(19980315)18:3<299::aid-joc247>3.0.co;2-l

50. Nesterov E.S. North Atlantic Oscillation: atmosphere and ocean. Moscow, Triada LTD, 2013. 144 p. (in Russian).

51. Vinogradova A.A. Seasonal and long-term variations in atmospheric circulation indices and air mass transport to the Russian Arctic. Optika Atmosfery i Okeana. 2014, 27, 6, 463–472. (in Russian).

52. Ozhigin V.K., Drobysheva S.S., Ushakov N.G. Internnual variability in the physical environment, zooplankton, capelin (Mllotus villosus) and North–East Arctic cod (Gadus morhua) in the Barents Sea. ICES Mar. Sci. Symposia. 2003, 219, 283–293.


Review

For citations:


Konik A.A., Zimin A.V., Kozlov I.E. Spatial and temporal variability of the Polar Frontal Zone characteristics in the Barents Sea in the first two decades of the XXI century. Fundamental and Applied Hydrophysics. 2021;14(4):39-51. https://doi.org/10.7868/S2073667321040043

Views: 203


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)