Preview

Fundamental and Applied Hydrophysics

Advanced search

Reconstruction of the currents structure in the Kuibyshev Reservoir using satellite data and field measurements

https://doi.org/10.59887/2073-6673.2024.17(1)-5

Abstract

   This paper is devoted to a series of the first field subsatellite experiments conducted in the waters of the Kuibyshev Reservoir (Kama estuary) in 2023. Simultaneously with ship-based measurements of current and wind fields, as well as chlorophyll-a concentration, two high-spatial-resolution satellite scanners surveyed the study area of the reservoir. From sequential images, current fields were reconstructed using the standard maximum cross-correlation (MCC) method, which were then compared with measurements from the Acoustic Doppler Current Profiler (ADCP). In certain parts of the water area, satisfactory agreement was obtained between the reconstructed currents and direct measurement current data. And in those parts of the water area where a significant discrepancy between the ADCP and MCC data was recorded, the possible reasons for the discrepancies were analyzed. Preliminary estimates of the parameters that have a significant impact on the possibility of reconstructing currents using the MCC method in inland eutrophicated water bodies have been made, and some limitations of the MCC method as a whole have been identified. Possible ways of further development of the method are analyzed.

About the Authors

I. A. Kapustin
Gaponov-Grekhov Institute of Applied Physics RAS; Lobachevsky State University of Nizhny Novgorod; Volga State University of Water Transport
Russian Federation

603950; 46 Ulyanova Str.; 603022; 23 Gagarin Avenue; 603950; 5 Nesterova Str.; Nizhny Novgorod

Scopus AuthorID: 25629629000; WoS ResearcherID: A-3593-2014



A. A. Molkov
Gaponov-Grekhov Institute of Applied Physics RAS; Lobachevsky State University of Nizhny Novgorod; Volga State University of Water Transport
Russian Federation

603950; 46 Ulyanova Str.; 603022; 23 Gagarin Avenue; 603950; 5 Nesterova Str.; Nizhny Novgorod

Scopus AuthorID: 55377777800; WoS ResearcherID: А-3623-2014



A. V. Ermoshkin
Gaponov-Grekhov Institute of Applied Physics RAS; Lobachevsky State University of Nizhny Novgorod
Russian Federation

603950; 46 Ulyanova Str.; 603022; 23 Gagarin Avenue; Nizhny Novgorod

Scopus AuthorID: 54410480500; WoS ResearcherID: D-5271-2015



D. V. Dobrokhotova
Gaponov-Grekhov Institute of Applied Physics RAS; Lobachevsky State University of Nizhny Novgorod
Russian Federation

603950; 46 Ulyanova Str.; 603022; 23 Gagarin Avenue; Nizhny Novgorod

Scopus AuthorID: 57219659995; WoS ResearcherID: AAA-7981-2022



O. A. Danilicheva
Gaponov-Grekhov Institute of Applied Physics RAS; Lobachevsky State University of Nizhny Novgorod
Russian Federation

603950; 46 Ulyanova Str.; 603022; 23 Gagarin Avenue; Nizhny Novgorod

Scopus AuthorID: 57204632237; WoS ResearcherID: AAG-7486-2020



G. V. Leshchev
Gaponov-Grekhov Institute of Applied Physics RAS; Lobachevsky State University of Nizhny Novgorod
Russian Federation

603950; 46 Ulyanova Str.; 603022; 23 Gagarin Avenue; Nizhny Novgorod

Scopus AuthorID: 57213165519



References

1. Butorin N.V. Hydrological processes and water mass dynamics in the Volga cascade reservoirs. Leningrad, Nauka, 1969.322 p. (in Russian).

2. Chen G., Han G., Yang X. On the intrinsic shape of oceanic eddies derived from satellite altimetry // Remote Sensing of Environment. 2019. Vol. 228. P. 75–89. doi: 10.1016/j.rse.2019.04.011

3. Kubryakov A.A., Stanichny S.V., Zatsepin A.G., Kremenetskiy V.V. Long-term variations of the Black Sea dynamics and their impact on the marine ecosystem // Journal of Marine Systems 2016. Vol. 163. P. 80–94. doi: 10.1016/j.jmarsys.2016.06.006

4. Emery W.J., Thomas A., Collins M., Crawford W.R., Mackas D. An objective method for computing advective surface velocities from sequential infrared satellite images // Journal of Geophysical Research: Oceans. 1986. Vol. 91. P. 12865–12878. doi: 10.1029/JC091iC11p12865

5. Kozlov I.E., Plotnikov E.V., Manucharyan G.E. Brief Communication: Mesoscale and submesoscale dynamics in the marginal ice zone from sequential synthetic aperture radar observations // Cryosphere. 2020. Vol. 14. P. 2941–2947. doi: 10.5194/tc-14-2941-2020

6. Marmorino G., Chen W. Use ofWorldView-2 along-track stereo imagery to probe a Baltic Sea algal spiral // Remote Sensing. 2019. Vol. 11. P. 865. doi: 10.3390/rs11070865

7. Osadchiev A., Sedakov R. Spreading dynamics of small river plumes off the northeastern coast of the Black Sea observed by Landsat 8 and Sentinel-2 // Remote Sensing of Environment. 2019. Vol. 221. P. 522–533. doi: 10.1016/j.rse.2018.11.043

8. Aleskerova A., Kubryakov A., Stanichny S., Medvedeva A., Plotnikov E., Mizyuk A., Verzhevskaia L. Characteristics of topographic submesoscale eddies off the Crimea coast from high-resolution satellite optical measurement // Ocean Dynamic. 2021. Vol. 71. P. 655–677.

9. Danilicheva O.A., Ermakov S.A., Kapustin I.A. Retrieval of surface currents from sequential satellite radar images // Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2020. Vol. 17. P. 93–96. doi: 10.21046/2070-7401-2020-17-6-93-96

10. Shomina O., Danilicheva O., Tarasova T., Kapustin I. Manifestation of spiral structures under the action of upper ocean currents // Remote Sensing. 2022. Vol. 14, N 8. P. 1871. doi: 10.3390/rs14081871

11. Dobrokhotova D.V., Kapustin I.A., Molkov A.A., Leshchev G.V. A study of the effect of hydropower operation regime on the redistribution of phytoplankton in the upper water layer in the dam section of the Gorki Reservoir. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2023, 20(1), 242–252. doi: 10.21046/2070-7401-2023-20-1-242-252 (in Russian).

12. Guzivaty1 V.V., Naumenko1 M.A., Rumyantsev1 V.A. Estimation of velocity of upper layer of Lake Ladoga by using of Maximum Cross Correlation (MCC) Method. Issledovanie Zemli iz Kosmosa. 2020, 1, 20–30. doi: 10.31857/S0205961420010042 (in Russian).

13. Alexanin A.I., Alexanina M.G., Karnatsky A.Y. Automatic computation of sea surface velocities on a sequence of satellite images. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2013, 10 (2), 131–142 (in Russian).

14. Alexanin A.I., Alexanina M.G., Zagumjonnov A.A., Kachur V.A. Improving the accuracy of calculating surface current velocities from satellite images. Vestnik Dalnevostochnogo Otdelenija Rossijskoj Akademii Nauk. 2015, 3 (181), 59–66 (in Russian).

15. Hu Z., Pan D., He X., Song D., Huang N., Bai Y., Xu Y., Wang X., Zhang L., Gong F. Assessment of the MCC method to estimate sea surface currents in highly turbid coastal waters from GOCI // International Journal of Remote Sensing. 2017. Vol. 38, N 2. P. 572–597. doi: 10.1080/01431161.2016.1268737

16. Elizarov D.A., Knyazev N.A., Lavrova O. Yu., Uvarov I.A. Integration into the See the Sea information system of acoustic Doppler current profiler data obtained concurrently with satellite data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2023, 20(3), 244–253 (in Russian). doi: 10.21046/2070-7401-2023-20-3-244-253

17. Roemmich D., Argo Steering Team. Argo: The challenge of continuing 10 years of progress. Oceanography. 2009, 22, 46–55. doi: 10.5670/oceanog.2009.65

18. The Sentinel Application Platform. URL: https://step.esa.int/main/download/snap-download/ (date of access: 10. 11. 2023).


Review

For citations:


Kapustin I.A., Molkov A.A., Ermoshkin A.V., Dobrokhotova D.V., Danilicheva O.A., Leshchev G.V. Reconstruction of the currents structure in the Kuibyshev Reservoir using satellite data and field measurements. Fundamental and Applied Hydrophysics. 2024;17(1):63-72. (In Russ.) https://doi.org/10.59887/2073-6673.2024.17(1)-5

Views: 329


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)