Modeling the barotropic tidal dynamics of the Kuril region
https://doi.org/10.59887/2073-6673.2024.17(1)-2
Abstract
A 3D boundary-value problem for computation barotropic tidal dynamics is solved at Kuril region, including southern part of the Okhotsk Sea, the Kuril Straits and its continental slope. The model is realised in statement for the contravariant components of velocity vector of the Programmed Complex “Cardinal”. Modeling the tidal dynamics of the straits of the Kuril Сhain and its continental slope is of particular importance due to the high geostrategic prestige of the region. The exceptional complexity of the relief of the area containing dozens of underwater volcanoes requires solving the problem in a complete non-hydrostatic formulation; this necessitates a multiprocessor implementation of the model with a high grid resolution for model representativity. An efficient methods for tidal dynamic reproduction at the 2D vertical cross-cuts domain is described. A statement of boundary problem at vertical cross-cuts is considered both in non-hydrostatic formulation and hydrostatic approximation. The results of computation contain the field of level tidal currents generated by the dominant wave K1 and summary wave in the synodic period; results of comparison the bottom vertical velocity at submarine mountain and on sharp depth changes in the hydrostatic and non-hydrostatic statements, result related to structure vertical velocity at cross-cut, the frequency spectrum and energy of tidal currents.
Keywords
About the Authors
А. А. RodionovRussian Federation
117997; 36 Nakhimovsky Prosp.; Moscow; 199034; 5 Universitetskaya Nab.; St. Petersburg
Scopus AuthorID: 56223713100; WoS ResearcherID: AAT-6466–2021
R. E. Vankevich
Russian Federation
117997; 36 Nakhimovsky Prosp.; Moscow
Scopus AuthorID: 25642198100; WoS ResearcherID: M-3215–2013
M. K. Klevannaya
Russian Federation
192212; 16/2 Belgradskaya Str.; St. Petersburg
N. E. Voltzinger
Russian Federation
117997; 36 Nakhimovsky Prosp.; Moscow
Scopus AuthorID: 6603260554
References
1. Voltzinger N.E., Androsov A.A. Modeling of long-wave non-hydrostatic dynamics on a mountainous terrain. St. Petersburg, Polytech Press, 2022, 170 p. (in Russian).
2. Voltzinger N.E., Androsov A.A., Klevanny K.A., Safrai A.S. Oceanological models of non-hydrostatic dynamics. Review. Fundamental and Applied Hydrophysics. 2018, 11, 1, 3–20. doi: 10.7868/S207366731801001X (in Russian).
3. Rodionov A.A., Androsov A.A., Fofonova V.V., Kuznetsov I.S., Voltsinger N.E. Modeling the tidal dynamics of the northern straits of the Kuril Ridge. Fundamental and Applied Hydrophysics. 2021, 14, 3, 20–34. doi: 10.7868/S2073667321030023 (in Russian).
4. Bogdanov K.T., Moroz V.V. Structure, dynamics and hydrological-acoustic characteristics of the waters of the Kuril Straits. Vladivostok, Dalnauka, 2000. 152 p. (in Russian).
5. Nakamura T., Awaji T., Hatayama T., Kazunori A. Tidal exchange through Kuril Straits // Journal of Physical Oceanography. 2000. Vol. 30. P. 1622–1644. doi: 10.1175/1520-0485(2000)030<1622:TETTKS>2.0.CO;2
6. Nakamura T., Awaji T. Tidally induced diapycnal mixing in the Kuril Straits and its role in water transformation and transport: a three-dimensional nonhydrostatic model experiment // Journal of Geophysical Research. 2004. Vol. 109, C09S07. P. 122. doi: 10.1029/2003JC001850
7. Rabinovich A.B., Thomson R.E., Bograd S.J. Drifter observations of anticyclonic eddies near Bussol’ Strait, the Kuril Islands // Journal of Oceanography. 2002. Vol. 58. P. 661–671. doi: 10.1023/A:1022890222516
8. Ohshima K., Nakanowatari T., Riser S., Wakatsuchi M. Seasonal variation in the in-and outflow of the Okhotsk Sea with the North Pacific // Deep Sea Research. II. 2010. Vol. 57. P. 1247–1256. doi: 10.1016/j.dsr2.2009.12.012
9. Katsumata K., Yasuda I. Estimates of non-tidal exchange transport between the Sea of Okhotsk and the North Pacific // Journal of Oceanography. 2010. Vol. 66. P. 489–504. doi: 10.1007/s10872-010-0041-9
10. Nakamura T., Takeuchi Y., Uchimoto K., Mitsudera H. Effects of temporal variation in tide-induced vertical mixing in the Kuril Straits on the thermohaline circulation originating in the Okhotsk Sea // Progress in Oceanography. 2014. Vol. 126. P. 135–145. doi: 10.1016/j.pocean.2014.05.007
11. Klevanny K.A., Smirnova E.V. Using the CARDINAL software package. Journal of the University of Water Communications. 2009, 1, 153–162 (in Russian).
12. Egbert G.D., Erofeeva S.Y. Efficient inverse modeling of barotropic ocean tides // Journal of Atmospheric and Oceanic Technology. 2002. Vol. 19, N 2. P. 183–204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
13. Magald M.G., Haine T.W.N. Hydrostatic and non-hydrostatic simulations of dense waters cascading of a shelf. The East Greenland case // Deep Sea Research. I: Oceanographic Research Papers. 2015. Vol. 96. P. 89–104. doi: 10.1016/j.dsr.2014.10.008
Review
For citations:
Rodionov А.А., Vankevich R.E., Klevannaya M.K., Voltzinger N.E. Modeling the barotropic tidal dynamics of the Kuril region. Fundamental and Applied Hydrophysics. 2024;17(1):23-38. (In Russ.) https://doi.org/10.59887/2073-6673.2024.17(1)-2