Possibilities of Ultra-Wide-Band Surveillance Systems on the Example of the Study of Natural Sonar of Toothed Whales
https://doi.org/10.7868/S2073667320040097
Abstract
Ultra-wide-band observing systems have not yet been created. However, theoretical advantages of sonar systems adapting to changes of hydrophysical conditions seem to be clearly visible in the study of marine mammalian sonar. Therefore, technical equipment for a broadband recording system under long-term laboratory experience is necessary. It makes possible studying the mobile broadband sonar using accurate biophysical and appropriate techniques that limiting the animal’s mobility during echolocation. The paper provides a number of methodological solutions for conducting an experiment on dolphins, which makes possible studying the noise immunity and secrecy of a natural sonar, and subsequently conduct comparative tests with technical analogues. Based on the presented methods, comparative estimates of echolocation signals belonging to various species of marine mammals will be obtained, and a database of biological signals will be formed — the search, tracking and recognition of underwater objects in difficult conditions of natural and artificial acoustic noise.
About the Authors
M. P. IvanovRussian Federation
199034, 7–9, Universitetskaya Emb., St. Petersburg
A. A. Rodionov
Russian Federation
117997, Nahimovsky Pr., 36, Moscow
V. E. Stefanov
Russian Federation
199034, 7–9, Universitetskaya Emb., St. Petersburg
References
1. Ayrapetyanets E., Konstantinov A. Echolocation in nature. L., Nauka, 1974. 512 p. (in Russian).
2. Au W.W.L. The Sonar of Dolphins. New York, Springer-Verlag, 1993. 227 p.
3. Belikov R.A., Bel’kovich V.M. Whistles of Beluga Whales in the Reproductive Gathering off Solovetskii Island in the White Sear. Acoustical Physics. 2007, 53, 528–534.
4. Bel’kovich V.M., Hahalkina E.N. Etologo-acoustic correlates of the Black Sea bottlenose dolphins. The Black Sea bottlenose dolphin (Tursiops truncates ponticus) / Eds. V.E. Sokolova and E.V. Romanenko. M., 1997, 513–543 (in Russian).
5. Titov A.A. Study of sound activity and phenomenological characteristics of the black dolphin systolic analyzer. PhD Diss. Biol. Sciences, Karadag, 1972 (in Russian).
6. Au W.W.L., Floyd R.W., Penner R.Н., Murchison А.Е. Measurement of echolocation signals of the Atlantic bottlenose dolphin Tursiops truncates Montagu in open water. J. Acoust. Soc. Am. 1974, 56, 4, 1280–1290.
7. Au W.W.L., Hastings M.C. Principles of Marine Bioacoustics. Springer, New York, 2008, 679 p.
8. Ivanov M.P., Rodionov A.A. Cetacean Acoustic System Appraisal Technologies. Proceedings X of the All-Russian Conference “Applied Hydroacoustics and Hydrophysics” of the Russian Academy of Sciences. May 27–30, 2010, 29–34 (in Russian).
9. Rutenko A.N., Vishnyakov A.A. Time Sequences of Sonar Signals Generated by a Beluga Whale When Locating Underwater Objects. Acoust. Phys. 2006, 52, 3, 314–323 doi: 10.1134/S1063771006030122
10. Ivanov M.P., Butov S.N., Leonova L.E., Romanovskay E.V., Stefanov V.E. Testing of a Laboratory Prototype for Recording Dolphin Signals with an Extended Frequency Band of the Through. Acoust. Phys. 2019, 65, 5, 603–610.
11. James J. Finneran, Brian K. Branstetter, Dorian S. Houser, Patrick W. Moore, Jason Mulsow, Cameron Martin, Shaun Perisho. High-resolution measurement of a bottlenose dolphin’s (Tursiops truncatus) biosonar transmission beam pattern in the horizontal plane. J. Acoust. Soc. Am. 2014, 136 (4), 2025–2038.
12. Au W.W.L. Echolocation signals of wild dolphins. Acoust. Phys. 2004, 50, 454–462. doi: 10.1134/1.1776224
13. Douglas P. Nowacek, Lesley Y. Thorne, David W. Johnston, Peter L. Tyack Responses of cetaceans to anthropogenic noise. Mammal Review. 2007, 37, 2, 81–115.
14. Stefanov V.Е., Ivanov M.P., Kashinov V.V., Stepanov B.G. Mechanisms of interference resistance of the sonar system of dolphins exposed to manmade interference. Symposium on Bio Sonar Systems and Bio-Acoustics, Institute Acoustics, Loughborough University, Proceedings of the Institute of Acoustics. 2009, 31, 1, 2009, 22–28.
15. Ayrapetyanc E.S., Sergeyev B.F., Ivanenko Y.V., Nonin Y.A., Chilingiris V.I., Ivanov M.P. Changing the location signals of dolphins in the process of differentiating spherical and cylindrical targets. Tez. Dokl. V All-Union Meet. to Study Marine Mammals. Makhachkala, 1972, 2, 234 p. (in Russian).
16. Ivanov M.P., Rodionov A.A., Kalatsky Yu.M. New technologies for cetacean sonar research. Proceedings of the 12th All-Russian Conference “Applied Technologies of Hydroacoustics and Hydrophysics” (GA-2014), St. Petersburg, 27–29 May 2014, 16–20 р. (in Russian).
17. Magnus Wahlberga, Frants H. Jensen, Kristian Beedholm, Lars Bejder, Cla´udia Oliveira, Marianne Rasmussen, Malene Simon, Anne Villadsgaard, Peter T. Madsenb. Source parameters of echolocation clicks from wild bottlenose dolphins (Tursiops aduncus and Tursiops truncatus). J. Acoust. Soc. Am. 130 (4), October, 2011, 2263–2274. doi: 10.1121/1.3624822
18. Ivanov M.P., Popov V.V. Characteristics of the acoustic radiation of the dolphin sonar in the process of detecting different class of underwater objects at extreme distances. Marine Mammals. Tez. Dockl. VII All-Union. Meeting. Simferopol. M., 1978, 141–142 (in Russian).
19. Au W.W.L., Penner R.H. Target Detection in Open Waters by an Echolocation Atlantic Bottlenose Dolphin (Tursiops truncates). J. Acoust. Soc. Am. 1974, 68, 4, 1077–1084.
20. Ivanov M.P. Dolphin’s echolocation signals in a complicated acoustic environment. Acoustical Physics. 2004, 50, 469– 479. doi: 10.1134/1.1776226
21. Au W.W.L., Hastings M.C. Principles of Marine Bioacoustics. Springer, New York, 2008. 679 p.
22. High-speed external I / O module from L–CARD. Russia. URL: https://en.lcard.ru/products/external/e20-10 (date of access: 12.11.2020).
23. Izmailov D. Yu. PowerGraph virtual measuring laboratory. Russia.URL: http://powergraph.ru/soft/pub.asp (date of access: (12.10.2020).
24. James J. Finneran Dolphin “packet” use during long-range echolocation tasks. J. Acoust. Soc. Am. 2013. 133, 1796. doi: 10.1121/1.4788997
25. Ivanov M.P., Mukhachev E.V., Isakov D.J., Danilov N.A., Ovchinnikov K.V., Rosum A.V., Sokolov P.A. Identification of dolphin signals in the conditions of laboratory experimentation in open water. Applied Safety Problems of Technical and Biotechnological Systems. 2018, 2, 14–24 (in Russian).
26. James J. Finneran, Ryan Jones, Jason Mulsow, Dorian S. Houser, Patrick W. Moore. Jittered echo-delay resolution in bottlenose dolphins (Tursiops truncates). Journal of Comparative Physiology A. Received: 1 July 2018. doi: 10.1007/s00359-018-1309-6
27. Giro L.Z. On the dependence of the repetition rate of dolphin echolocation signals on the complexity of the echolocation problem. Marine Instrument Engineering. Ser.: Acoustics. 1972, 2, 84–94.
28. Au W.W.L., Penner R.H. Detection in a Noise by Atlantic Bottlenose Dolphin. J. Acoust. Soc. Am. 1981, 70, 6, 687–693.
29. Romanenko E.V. Acoustics of Dolphins and Fish (Review). Acoust. Phys. 2019, 65, 1, 82–92. doi: 10.1134/S1063771019010081
30. Buckstaff K.C. Effects of watercraft noise on the acoustic behavior of bottlenose dolphins, Tursiops truncatus, in Sarasota Bay, Florida. Mar Mammal Sci. 2004, 20:709–725.
31. Nikolina Rako Gospić, Marta Picciulin. Changes in whistle structure of resident bottlenose dolphins in relation to underwater noise and boat traffic. Marine Pollution Bulletin. 2016. doi: 10.1016/j.marpolbul.2016.02.030
32. Douglas P. Nowacek, Lesley Y. Thorne, David W. Johnston, Peter L. Tyack Responses of cetaceans to anthropogenic noise. Mammal Review. 2007, 37, 2, 81–115.
33. Au W.W.L., Moore P.W.B., Pawloski D.A. Detection of complex echoes in noise by an echolocating dolphin. J. Acoust. Soc. Am. 1988, 83, 662–668.
34. James J. Finneran. Dolphin strategies for long-range object detection and change detection. J. Acoust. Soc. Am. 2013, 133, 3406. doi: 10.1121/1.4805940
35. Frants H. Jensen. Acoustic behavior or bottlenose dolphins and pilot whales. PhD Diss. Thesis, Zoophysiology, Department of biological Sciences, University of Aarhus, Denmark, 2011, 195 p.
36. Ivanov M.P. Echolocation signals of a dolphin (Tursiops truncatus) when detecting and recognizing underwater objects. PhD Thesis of Biological Sciences. St. Petersburg, 2000, 137 p.
37. Acopian A.I. Study of the patterns of changes in the frequency of following the echolocation signals of the dolphin Tursiops truncatus. PhD in Biological Sciences. St. Petersburg, 1995, 138.
38. James J. Finneran. Multi-echo processing by a bottlenose dolphin operating in “packet” transmission mode at long range. J. Acoust. Soc. Am. 2014, 136, 2876. doi: 10.1121/1.4898043
39. Popov S.V. Uncertainty of the external environment and arousal. Stress as a determinant of behavior. 2010, 71, 4, JulyAugust, 287–297.
40. Michael Ladegaard, Jason Mulsow, Dorian S. Houser, Frants Havmand Jensen, Mark Johnson, Peter Teglberg Madsen, James J. Finneran. Dolphin echolocation behaviour during active long-range target approaches. Journal of Experimental Biology. 2019, 222, jeb189217. doi: 10.1242/jeb.189217
41. Ryabov V.A. Some Aspects of Reflection of Dolphin FM Signals (Whistles) in an Experimental Tank. Acoustic Physics. 2019, 65, 6, 771–777. doi: 10.1134/S1063771019060125
Review
For citations:
Ivanov M.P., Rodionov A.A., Stefanov V.E. Possibilities of Ultra-Wide-Band Surveillance Systems on the Example of the Study of Natural Sonar of Toothed Whales. Fundamental and Applied Hydrophysics. 2020;13(4):100-120. (In Russ.) https://doi.org/10.7868/S2073667320040097