Arctic Ocean acidification dynamics during 1993–2021 and its projections for the rest of this century
https://doi.org/10.59887/2073-6673.2023.16(4)-5
Abstract
Dynamics of acidification of the Arctic Ocean through 1993–2021 and predictions of further tendencies of this process until the end of 2100 were assessed making use of both the GLODAPv.2021 and the Global Ocean Biogeochremistry Hindcast (GOBH) reanalysis data on pH. The projections of pH were performed by CMIP6 models for four scenarios of rates of socio-economic and agricultural development and emissions of greenhouse gases: SSP1–2.6, SSP2–4.5, SSP3–7.0 and SSP5–8.5.
The tendencies of pH decline over the last 27 years (1993–2019) as determined from the GLODAP in situ and the reanalysis data over 1993–2021 proved to be, respectively –0.9% (from 8.18–8.11) and –0.7% (from 8.10–8.05). Thus, the annual acidification rate as assessed from both data sources proved to be –0.03%.
Through the percentile method-based comparison of consistency of historical observation data on pH with GBH model hindcast four best models were identified: MPI-ESM1–2-LR, NorESM2-MM, NorESM2-LM, and CMCC-ESM2. The projection results strongly indicate that the Arctic Ocean acidification will continue till the end of this century. The highest rates of pH decrease (–4.9% and –6.2%) were forecasted, respectively, for scenarios SSP3–7.0 and SSP5–8.5 that implied the global mean temperature increases by 3.6 °C and 4.4 °C, respectively. A comparison of the results obtained with the previously made assessments is indicative that by the end of the current century the rate of acidification (i. e. pH decrease) in the Arctic should be expected to be higher than that averaged over the World Oceans: the difference for each of the SSP scenarios proved to be –0.1.
Keywords
About the Authors
A. S. MalyshevaRussian Federation
MALYSHEVA, Aleksandra S.
РИНЦ AuthorID: 1120098
WoS ResearcherID HPE-0124-2023
7 14th Line V.O., St. Petersburg, 199034
7–9 Universitetskaya Emb., St. Petersburg, 199034
I. V. Radchenko
Russian Federation
RADCHENKO, Iuliia V., Cand.Sc. (Agriculture)
РИНЦ AuthorID: 1064639
Scopus AuthorID: 56480302400, WoS ResearcherID AAF-4852-2019
7 14th Line V.O., St. Petersburg, 199034
D. V. Pozdnyakov
Russian Federation
POZDNYAKOV, Dmitry V., Dr. Sc. (Phys.-Math.)
РИНЦ AuthorID: 179336
Scopus AuthorID: 56370460300
7 14th Line V.O., St. Petersburg, 199034
7–9 Universitetskaya Emb., St. Petersburg, 199034
11 Pushkinskaya Str., Petrozavodsk, 185910
References
1. Doney S.C., Fabry V.J., Feely R.A., Kleypas J.A. Ocean Acidification: The other CO2 problem. Annual Review of Marine Science. 2009, 1, 169–192. doi:10.1146/annurev.marine.010908.163834
2. Xue L., Cai W.-J. Total alkalinity minus dissolved inorganic carbon as a proxy for deciphering ocean acidification mechanisms. Marine Chemistry. 2020, 222, 103791. doi:10.1016/j.marchem.2020.103791
3. Mostofa K.M.G., Liu C.-Q., Zhai W. et al. Reviews and syntheses: Ocean acidification and its potential impacts on marine ecosystems. Biogeosciences. 2016, 13, 1767–1786. doi:10.5194/bg-13-1767–2016
4. Feely R.A., Doney S.C., Cooley S.R. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography. 2009, 22(4), 36–47. doi:10.5670/oceanog.2009.95
5. Salisbury J., Green M.L., Hunt C.W., Campbell J.W. Coastal acidification by rivers: A threat to shellfish? Eos, Transactions American Geophysical Union. 2008, 89, 50, 513. doi:10.1029/2008EO500001
6. Yamamoto A., Kawamiya M., Ishida A., Yamanaka Y., Watanabe S. Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification. Biogeosciences. 2012, 9, 2365–2375. doi:10.5194/bg-9–2365–2012
7. Yang X., Xue L., Li Y. et al. Treated wastewater changes the export of dissolved inorganic carbon and its isotopic composition and leads to acidification in coastal oceans. Environmental Science and Technology. 2018, 52(10), 5590– 5599. doi:10.1021/acs.est.8b00273
8. Capelle D.W., Kuzyk Z.A., Papakyriakou T. et al. Effect of terrestrial organic matter on ocean acidification and CO2 flux in an Arctic shelf sea. Progress in Oceanography. 2020, 185, 102319. doi:10.1016/j.pocean.2020.102319
9. Keeling R.F., Körtzinger A., Gruber N. Ocean deoxygenation in a warming world. Annual Review of Marine Science. 2010, 2, 1, 199–229. doi:10.1146/annurev.marine.010908.163855
10. Oschlies A., Brandt P., Stramma L., Schmidtko S. Drivers and mechanisms of ocean deoxygenation. Nature Geoscience. 2018, 11, 7, 467–473. doi:10.1038/s41561-018-0152-2
11. Riebesell U., Zondervan I., Rost B. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature. 2000, 407, 364–367. doi:10.1038/35030078
12. Albright R., Caldeira L., Hosfelt J. et al. Reversal of ocean acidification enhances net coral reef calcification. Nature. 2016, 531, 362–365. doi:10.1038/nature17155
13. Pörtner H.-O. Ecosystem effects of ocean acidification in times of ocean warming: A physiologists view. Marine Ecology Progress Series. 2008, 373, 203–217. doi:10.3354/meps07768
14. Kwiatkowski L., Torres O., Bopp L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences. 2020, 17, 3439– 3470. doi:10.5194/bg-17-3439–2020
15. Zachos J.C., Röhl U., Schellenberg S.A. et al. Rapid acidification of the ocean during the paleocene-eocene thermal maximum. Science. 2005, 308, 5728, 1611–1615. doi:10.1126/science.1109004
16. Zeebe R.E., Ridgwell A. Past changes in ocean carbonate chemistry. Ocean Acidification. Ed. by Gattuso J.-P. and Hansson L. Oxford University Press, Oxford. 2011, 21–40. doi:10.1093/oso/9780199591091.003.0007
17. Raven J., Caldeira K., Elderfield H. et al. Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society, London, UK, 2005. 68 p.
18. Jiang Z., Song Z., Bai Y. et al. Remote sensing of global sea surface pH based on massive underway data and machine learning. Remote Sensing. 2022, 14(10), 2366. doi:10.3390/rs14102366
19. Bindoff N.L., Willebrand J., Artale V. et al. Observations: oceanic climate change and sea level. Climate change 2007: The physical science basis. Contribution of Working Group I / Ed. by: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. Cambridge University Press, Cambridge. 2007, 385–428.
20. Sabine C.L., Feely R.A., Gruber N. et al. The Oceanic Sink for Anthropogenic CO2. Science American Association for the Advancement of Science (AAAS). 2004, 305, 5682, 367–371. doi:10.1126/science.1097403
21. Orr J.C., Fabry V.J., Aumont O. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature. 2005, 437, 681–686. doi:10.1038/nature04095
22. Bellerby R., Anderson L., Osborne E. et al. Arctic Ocean Acidification: an update. AMAP Assessment 2018: Arctic Ocean Acidification. Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway, 2018. 187 p. doi:10.25607/OBP-783
23. Will S. The Arctic in an Earth system context: From brake to accelerator of change. Ambio. 2006, 35, 4, 153–159.
24. Lauvset S.K., Lange N., Tanhua T. et al. Global Ocean data analysis project version 2.2021 (GLODAPv2.2021) (NCEI Accession 0237935). NOAA National Centers for Environmental Information. Dataset. 2021. URL: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0237935 (дата обращения: 26.02.2023). doi:10.25921/ttgq-n825
25. Artemiev V.E. Geochemistry of organic matter in the river-sea system. M., Nauka, 1993. 204 p. (in Russian).
26. Smirnov M.P. Dissolved organic matters and mineralization of river water of mountains with tundra-taiga types of vertical zoning in Russia. Izvestiya Rossiiskoi Akademii Nauk, Seriya Geograficheskaya. 2015, 5, 54–68 (in Russian). doi:10.15356/0373-2444-2015-5-54-68
27. Rérolle V., Ruiz-Pino D., Rafizadeh M. et al. Measuring pH in the Arctic Ocean: Colorimetric method or SeaFET? Methods in Oceanography. 2016, 17, 32–49. doi:10.1016/j.mio.2016.05.006
28. Copernicus Marine Environment Monitoring Service: Global ocean biogeochemistry hindcast dataset (GLOBAL_MULTIYEAR_BGC_001_029). URL: https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_BGC_001_029/ (дата обращения: 21.02.2023). doi:10.48670/moi-00019
29. Earth System Grid Federation portal. URL: https://esgf-node.llnl.gov (дата обращения: 03.03.2023).
30. O’Neill B.C., Tebaldi C., Van Vuuren D.P. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development. 2016, 9(9), 3461–3482. doi:10.5194/gmd-9-3461–2016
31. Masson-Delmotte V., Zhai P., Pirani A. et al. (eds.). IPCC, 2021: Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, Cambridge University Press, 2023. doi:10.1017/9781009157896
32. Gnatiuk N., Radchenko I., Davy R., Morozov E., Bobylev L. Simulation of factors affecting Emiliania huxleyi blooms in Arctic and sub-Arctic seas by CMIP5 climate models: model validation and selection. Biogeosciences. 2020, 17(4), 1199–1212. doi:10.5194/bg-17-1199–2020
Review
For citations:
Malysheva A.S., Radchenko I.V., Pozdnyakov D.V. Arctic Ocean acidification dynamics during 1993–2021 and its projections for the rest of this century. Fundamental and Applied Hydrophysics. 2023;16(4):63–74. https://doi.org/10.59887/2073-6673.2023.16(4)-5