Preview

Fundamental and Applied Hydrophysics

Advanced search

Effect of Surface Waves on Settling and Drifting of Microplastic Particles: A Laboratory Experiment

https://doi.org/10.59887/2073-6673.2023.16(4)-3

Abstract

Particle trajectories and average settling and drift velocities of microplastic particles under wave action were studied in a linear wind-wave channel. A wave-maker and an airflow above the water surface created various hydrodynamic conditions. Particles of various shapes (isometric, flat, elongated) were used. The paper provides a brief overview of the theoretical approaches (dimensional analysis) used to study the transport of microplastics in the presence of surface waves and currents. Based on this, a characteristic of wave regimes and sets of experimental particles is given. Terminal settling velocities of the particles in a quiet fluid are 1.0–3.8 cm/s. They were obtained experimentally and may be of independent interest. The settling trajectories of 13 types of particles in 4 wave regimes were obtained and analyzed. According to Welch’s t-criterion (p < 0.05), the average particle settling rate in the presence of waves differs slightly from the terminal settling velocity, which is consistent with other works. The results indicate that the average horizontal (drift) velocity follows the velocity of the mean current. The presence of wind enhances horizontal transport due to the induction of drift current and drastically increases particle dispersion.

About the Authors

I. A. Isachenko
Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences; Shirshov Institute оf Oceanology, Russian Academy of Sciences
Russian Federation

46 Ulyanova Street, Nizhny Novgorod, 603950

36 Nakhimovsky Prosp., Moscow, 117997



I. M. Kraev
Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
Russian Federation

46 Ulyanova Street, Nizhny Novgorod, 603950



D. A. Sergeev
Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences
Russian Federation

46 Ulyanova Street, Nizhny Novgorod, 603950



References

1. Kukulka T. et al. The effect of wind mixing on the vertical distribution of buoyant plastic debris. Geophysical Research Letters. 2012, 39(7), L0760, doi:10.1029/2012GL051116

2. Isobe A., Kubo K., Tamura Y. et al. Selective transport of microplastics and mesoplastics by drifting in coastal waters. Marine Pollution Bulletin. 2014, 89(1–2), 324–330. doi:10.1016/j.marpolbul.2014.09.041

3. Fujimura A.G., Reniers A.J., Paris C.B. et al. Numerical simulations of larval transport into a rip-channeled surf zone. Limnology and Oceanography. 2014, 59(4), 1434–1447, doi:10.4319/lo.2014.59.4.1434

4. Fuchs H.L., Hunter E.J., Schmitt E.L., Guazzo R.A. Active downward propulsion by oyster larvae in turbulence. Journal of Experimental Biology. 2013, 216(8), 1458–1469, doi:10.1242/jeb.079855

5. Clark L.K., DiBenedetto M.H., Ouellette N.T., Koseff J.R. Settling of inertial nonspherical particles in wavy flow. Physical Review Fluids. 2020, 5(12), 124301. doi:10.1103/PhysRevFluids.5.124301

6. De Leo A., Cutroneo L., Sous D. et al. Settling velocity of microplastics exposed to wave action. Journal of Marine Science and Engineering. 2021, 9 (2), 142. doi:10.3390/jmse9020142

7. Clark L.K., DiBenedetto M.H., Ouellette N.T., Koseff J.R. Dispersion of finite-size, non-spherical particles by waves and currents. Journal of Fluid Mechanics. 2023, 954, A3. doi:10.1017/jfm.2022.968

8. Forsberg P.L., Sous D., Stocchino A., Chemin R. Behaviour of plastic litter in nearshore waters: First insights from wind and wave laboratory experiments. Marine Pollution Bulletin. 2020, 153, 111023. doi:10.1016/j.marpolbul.2020.111023

9. Alsina J.M., Jongedijk C.E., van Sebille E. Laboratory measurements of the wave-induced motion of plastic particles: Influence of wave period, plastic size and plastic density. Journal of Geophysical Research: Oceans. 2020, 125(12), e2020JC016294. doi:10.1029/2020JC016294

10. Dietrich W.E. Settling velocity of natural particles. Water Resources Research. 1982, 18(6), 1615–1626. doi:10.1029/WR018i006p01615

11. Zhiyao S., Tingting W., Fumin X., Ruijie L. A simple formula for predicting settling velocity of sediment particles. Water Science and Engineering. 2008, 1(1), 37–43. doi:10.1016/S1674-2370(15)30017-X

12. Khatmullina L., Isachenko I. Settling velocity of microplastic particles of regular shapes. Marine Pollution Bulletin. 2017, 114(2), 871–880. doi:10.1016/j.marpolbul.2016.11.024

13. Hazzab A., Terfous A., Ghenaim A. Measurement and modeling of the settling velocity of isometric particles. Powder Technology. 2008, 184(1), 105–113. doi:10.1016/j.powtec.2007.08.009

14. DiBenedetto M.H., Koseff J.R., Ouellette N.T. Orientation dynamics of nonspherical particles under surface gravity waves. Physical Review Fluids. 2019, 4(3), 034301, doi:10.1103/PhysRevFluids.4.034301

15. Guler H.G., Larsen B.E., Quintana O. et al. Experimental study of non-buoyant microplastic transport beneath breaking irregular waves on a live sediment bed. Marine Pollution Bulletin. 2022, 181, 113902. doi:10.1016/j.marpolbul.2022.113902

16. Jackson D.W.T., Cooper J.A.G., Del Rio L. Geological control of beach morphodynamic state. Marine Geology. 2005, 216(4), 297–314. doi:10.1016/j.margeo.2005.02.021

17. Stocchino A., De Leo F., Besio G. Sea waves transport of inertial micro-plastics: Mathematical model and applications. Journal of Marine Science and Engineering. 2019, 7(12), 467. doi:10.3390/jmse7120467

18. Troitskaya Yu.I., Sergeev D.A., Kandaurov A.A. et al. Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions. Journal of Geophysical Research. 2012, 117, C00J21. doi:10.1029/2011JC007778

19. OpenCV URL: https://opencv.org (Accessed 05.03.2023).

20. ALGLIB User Guide — Penalized regression spline. URL: https://www.alglib.net/interpolation/leastsquares.php (Accessed 05.03.2023).

21. Longuet-Higgins M.S. Eulerian and Lagrangian aspects of surface waves. Journal of Fluid Mechanics. 1986, 173, 683–707. doi:10.1017/S0022112086001325

22. Grue J., Kolaas J. Experimental particle paths and drift velocity in steep waves at finite water depth. Journal of Fluid Mechanics. 2017, 810, R1. doi:10.1017/jfm.2016.726

23. Sudolsky A.S. Dynamic phenomena in reservoirs. Leningrad, Gidrometeoizdat, 1991. 263 p. (in Russian).

24. Santamaria F., Boffetta G., Afonso M.M. et al. Stokes drift for inertial particles transported by water waves. Europhysics Letters. 2013, 102(1), 14003. doi:10.1209/0295–5075/102/14003


Review

For citations:


Isachenko I.A., Kraev I.M., Sergeev D.A. Effect of Surface Waves on Settling and Drifting of Microplastic Particles: A Laboratory Experiment. Fundamental and Applied Hydrophysics. 2023;16(4):32–44. (In Russ.) https://doi.org/10.59887/2073-6673.2023.16(4)-3

Views: 218


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)