Preview

Fundamental and Applied Hydrophysics

Advanced search

Wind waves impact on the velocity in wave boundary layer in the condition of dynamically smooth surface

https://doi.org/10.59887/2073-6673.2023.16(4)-2

Abstract

One of the factors of wind wave impact on vertical distributions in atmosphere surface layer is the flux of momentum produced by the wave-produced fluctuations. Wave surface are supposed to be a dynamically rough and effects of the molecular viscosity are neglected. In this paper impact of wave momentum fluxes with values of wind velocity which lead to dynamically smooth ocean surface is estimated. The well-known theoretical aspects and results of experimental research are applied. Dependence of dimensionless thickness of viscosity layer on dimensionless roughness of smooth surface is analyzed. The equations of motion are formed taking into account the manifestation of three factors: molecular, turbulent and wave momentum flux. The models based on these equations are described.
The choice of constant coefficients that are set in calculations with this model is considered. Results of calculations and analysis of vertical profiles of wind speed and the dependence of the drag coefficient on wind velocity under various wave age.

About the Authors

K. L. Yegorov
Russian State Hydrometeorology University
Russian Federation

98 Malookhtinsky Pr., St. Petersburg, 195196



K. Yu. Bulgakov
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Russian Federation

36 Nakhimovsky Prosp., Moscow, 117997



References

1. Phillips O.M. The dynamics of the upper ocean. Cambridge University Press, 1966, 319 p. doi:10.1088/0031-9112/18/5/015

2. Miles J.W. A note on the interaction between surface waves and wind profiles. Journal of Fluid Mechanics. 1965, 22 (4), 823–827. doi:10.1017/S0022112065001167

3. Kitaygorodsky С.А. Physics of air -sea iteraction. Leningrad, Gidrometeoizdat, 1970. 280 p. (in Russian).

4. Yegorov K.L. Estimation of wave impact on dynamic structure of wave boundary layer of atmosphere. Izvestiya, Atmospheric and Oceanic Physics. 1984, 12, 1183–1185 (in Russian).

5. Yegorov K.L. Asymptotic behaviour of a turbulent mixing path near a wave layer. Soviet Journal of Physical Oceanography. 1990, 1, 513–517. doi:10.1007/BF02197009

6. Chalikov D.V. Numerical simulation of wind-wave interaction. Journal of Fluid Mechanics. 1978, 87, 561–582. doi:10.1017/S0022112078001767

7. Chalikov D.V. Numerical simulation of the boundary layer above waves. Boundary-Layer Meteorology. 1986, 34, 63–98. doi:10.1007/BF00120909

8. Chalikov D. The parameterization of the wave boundary layer. Journal of Physical Oceanography. 1995, 25, 1333–1349. doi:10.1175/1520-0485(1995)025<1333: TPOTWB>2.0.CO;2

9. Yephimov V.V. About structure of wind velocity field in the wave boundary layer and energy transpher from wind to waves. Izvestiya, Atmospheric and Oceanic Physics. 1970, 10, 1043–1058 (in Russian).

10. Kline P., Coantic M. A numerical study of turbulent processes in the marine upper layer. Journal of Physical Oceanography. 1981, 11, 849–863. doi:10.1175/1520-0485(1981)011<0849: ANSOTP>2.0.CO;2

11. Yephimov V.V. Dymamic of wave process in boundary layers of atmosphere and ocean. Kyev, Naukova Dumka, 1981. 256 p. (in Russian).

12. Galperin B. et. al. Modeling rotating stratified turbulent flows with application to oceanic mixed layers. Journal of Physical Oceanography. 1989, 19, 901–916. doi:10.1175/1520-0485(1989)019<0901: MRSTFW>2.0.CO;2

13. Boum E., Caponi E. Modeling the effects of buoyancy on the evolution of geophysical boundary layers. Journal of Geophysical Research. 1992, 97 (C10), 15513–15527. doi:10.1029/92JC01715

14. Makin V.K., Kudryavtsev V.N. Coupled sea surface-atmosphere model. Part 1. Wind over waves coupling. Journal of Geophysical Research. 1999, 104(C4), 7613–7623. doi:10.1029/1999JC900006

15. Kudryavtsev V.N., Makin, V.K., Chapron B. Coupled sea surface-atmosphere model. Part 2. Spectrum of short wind waves. Journal of Geophysical Research. 1999, 104(C4), 7625–7639. doi:10.1029/1999JC900005

16. Kudryavtsev V., Chapron B., Makin V. Impact of wind waves on the air-sea fluxes: A coupled model. Journal of Geophysical Research: Oceans. 2014, 119, 1217–1236. doi:10.1002/2013JC009412

17. Chalikov D.V., Bulgakov K. Yu. The structure of surface layer above sea. Fundamental and Applied Hydrophysics. 2019, 12(2), 50–65. doi:10.7868/S2073667319020072 (in Russian).

18. Charnock H. Wind stress on a water surface. Quarterly Journal of the Royal Meteorological Society. 1955, 81, 639–640. doi:10.1002/qj.49708135027

19. Nikuradse J. Str¨omungsgesetze in rauhen Rohren. Tech. Rep. 361. Forsch. Arb. Ing.Wes. 1933.

20. Bulgakov K. Yu., Fokina K.V. Modeling the Surface Layer above Sea with Parameterization of Stratification and the Elements of the Wind Waves Influence. Fundamental and Applied Hydrophysics. 2021, 14(2), 3–16. doi:10.7868/S2073667321020015 (in Russian).

21. Reichardt Н. Vorträge aus dem Gebiet der Aeround Hydrodynamik. Über das Messen turbulenter Längsund Querschwankungen. Zeitschrift für Angewandte Mathematik und Mechanik. 1938, 18, 358–361. doi:10.1002/zamm.19380180605

22. Reichardt H. Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen. Zeitschrift für Angewandte Mathematik und Mechanik. 1951, 31 (7), 208–219. doi:10.1002/zamm.19510310704

23. Laufer J. The structure of turbulence in fully developed pipe flow Natl. Advisory Comm. Aeronaut. Tech. Repts. 2954, 1954.

24. Rotta J. Das in Wandnähe gültige Geschwindigkeitsgesetz turbulenter Strömungen Ingenieur-Archiv. 1950, 18, 277– 280. doi:10.1007/BF00536743

25. Мiles J.W. On the velocity profile for turbulent flow near a smooth wall. Journal of the Aeronautical Sciences. 1957, 24(9), 704.

26. Monin A.S., Yaglom A.M. Statistical fluid mechanics: mechanics of turbulence. Vol. 1. Cambridge, M.I.T. Press, 1971. 770 p. doi:10.1119/1.10870

27. Hince I.O. Turbulence. Moscow, Physmatgiz, 1963. 680 p. (in Russian).

28. Prandtl L. Bericht uber Untersuchungen zur ausgebildeten Turbulenz. Zeitschrift für Angewandte Mathematik und Mechanik. 1925, 5(2), 136–139. doi:10.1007/978-3-662-11836-8_57

29. Chalikov D., Rainchik S. Coupled numerical modelling of wind and waves and the theory of the wave boundary layer. Boundary-Layer Meteorology. 2010, 138(1), 1–41. doi:10.1007/s10546-010-9543-7

30. Hasselmann K., Barnett R.P., Bouws E. et al. Measurements of wind-wave growth and swell decay during the Joint Sea Wave Project (JONSWAP). Deutsches Hydrogr. Inst. 1973. 95 p.

31. Pierson W.J., Moscowitz L. A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodskii. Journal of Geophysical Research. 1964, 69(24), 5181–5190. doi:10.1029/JZ069i024p05181

32. Donelan M.A. Air-sea interaction. The Sea. 1990, 9, 239–292.

33. Donelan M. The dependence of the aerodynamic drag coefficient on wave parameter // Proc. First Int. Conf. on Meteorol. and Air-Sea Interaction of the Coastal Zone? The Hague, Amer. Meteor. Soc., 1982, 381–387.

34. Babanin A.V., Makin V.K. Effects of wind trend and gustiness on the sea drag: Lake George study. Journal of Geophysical Research. 2008, 113, C02015. doi:10.1029/2007JC004233


Review

For citations:


Yegorov K.L., Bulgakov K.Yu. Wind waves impact on the velocity in wave boundary layer in the condition of dynamically smooth surface. Fundamental and Applied Hydrophysics. 2023;16(4):18-31. (In Russ.) https://doi.org/10.59887/2073-6673.2023.16(4)-2

Views: 272


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)