Preview

Fundamental and Applied Hydrophysics

Advanced search

Transformation of a fully nonlinear breather-like package of internal waves over a bottom step in a layered fluid

https://doi.org/10.59887/2073-6673.2023.16(3)-10

Abstract

   In this paper, we study the process of transformation of a localized wave packet over a bottom step in a three-layer fluid, in which the height of the step is equal to or exceeds the thickness of the lower layer; therefore, density stratification becomes two-layer in the shallow water zone. In numerical experiments, both the height of the step and the width of the step were varied. The problem is solved in the framework of a fully nonlinear model of hydrodynamics of an inviscid incompressible stratified fluid. The primary analysis consisted in estimating the values of dimensionless parameters used, as a rule, in runup problems: the Froude and Iribarren numbers, the ratio of the characteristic wavelength to the characteristic slope width, the ratio of the topographic slope to the characteristic wave beam angle. Since the “cutoff” line for the lower pycnocline is partially or completely located on a step, one could expect the effects of run-up, breaking or reflection of waves propagating along the lower pycnocline, but this doesn’t happen. It is shown that the reflection of the wave packet from the step is minimal in all cases considered, a strong steepening of the wave is observed, but no breaking occurs in this case — the wave then just quickly decays on the lower pycnocline. An analysis of the spectral amplitudes and energy fields allows us to conclude that there is a transfer of energy from the lower pycnocline to the upper one. The breather in a two-layer fluid cannot exist, but the wave packet formed in the upper pycnocline after its destruction has much higher energy than it has before the step.

About the Authors

N. A. Sannikov
Nizhny Novgorod State Technical University n. a. R.E. Alekseev
Russian Federation

603950

Minin Street, 24

Nizhny Novgorod



O. E. Kurkina
Nizhny Novgorod State Technical University n. a. R.E. Alekseev
Russian Federation

603950

Minin Street, 24

Nizhny Novgorod



E. A. Rouvinskaya
Nizhny Novgorod State Technical University n. a. R.E. Alekseev
Russian Federation

603950

Minin Street, 24

Nizhny Novgorod



A. A. Kurkin
Nizhny Novgorod State Technical University n. a. R.E. Alekseev
Russian Federation

603950

Minin Street, 24

Nizhny Novgorod



References

1. Pineda J. Internal tidal bores in the nearshore: Warm-water fronts, seaward gravity currents and the onshore transport of neustonic larvae. Journal of Marine Research. 1994, 52, 3, 427–458. URL: https://www.researchgate.net/publication/230558711_Internal_tidal_bores_in_the_nearshore_Warm-water_fronts_seaward_gravity_currents_and_the_onshore_transport_of_neustonic_larvae

2. Inall M.E. Internal wave induced dispersion and mixing on a sloping boundary. Geophysical Research Letters. 2009, 36, L05604. doi: 10.1029/2008GL036849

3. Bourgault D., Morsilli M., Richards C., Neumeier U., Kelley D.E. Sediment resuspension and nepheloid layers induced by long internal solitary waves shoaling orthogonally on uniform slopes. Continental Shelf Research. 2014, 71, 21–33. doi: 10.1016/j.csr.2013.10.019

4. Aghsaee P., Boegman L., Lamb K.G. Breaking of shoaling internal solitary waves. Journal of Fluid Mechanics. 2010, 659, 289–317. doi: 10.1017/S002211201000248X

5. Nakayama K., Sato T., Shimizu K., Boegman L. Classification of internal solitary wave breaking over a slope. Physical Review Fluids. 2019, 4(1), 014801. doi: 10.1103/PhysRevFluids.4.014801

6. Nakayama K., Shintani T., Kokubo K. Residual current over a uniform slope due to breaking of internal waves in a two-layer system. Journal of Geophysical Research: Oceans. 2012, 117(C10), C10002. doi:10.1029/2012JC008155

7. Nakayama K., Imberger J. Residual circulation due to internal waves shoaling on a slope. Limnology and Oceanography. 2010, 55(3), 1009. doi: 10.4319/lo.2010.55.3.1009

8. Sutherland B.R., Barrett K.J., Ivey G.N. Shoaling internal solitary waves. Journal of Geophysical Research: Oceans. 2013, 118(9), 4111–4124. doi: 10.1002/jgrc.20291

9. Grimshaw R., Pelinovsky E., Talipova T. The modified Korteweg-de Vries equation in the theory of large-amplitude internal waves. Nonlinear Processes in Geophysics. 1997, 4, 237–250.

10. Lamb K.G., Polukhina O., Talipova T., et al. Breather generation in fully nonlinear models of a stratified fluid. Physical Review E. 2007, 75(4), 046306. doi: 10.1103/PhysRevE.75.046306

11. Rouvinskaya E., Talipova T., Kurkina O., Soomere T., Tyugin D. Transformation of internal breathers in the idealised shelf sea conditions. Continental Shelf Research. 2015, 110, 60–71. doi: 10.1016/j.csr.2015.09.017

12. Terletska K., Jung K.T., Talipova T. et al. Internal breather-like wave generation by the second mode solitary wave interaction with a step. Physics of Fluids. 2016, 28, 116602. doi: 10.1063/1.4967203

13. Lobovikov P.V., Kurkina O.E., Kurkin A.A., Kokoulina M.V. Transformation of the first mode breather of internal waves above a bottom step in a three-layer fluid. Izvestiya, Atmospheric and Oceanic Physics. 2019, 55, 6, 650–661. doi: 10.1134/S0001433819060094

14. Talalushkina L.V., Kurkina O.E., Kurkin A.A., Giniyatullin A.R. Shoaling of an Internal Wave Packet in an almost Three-Layer Sea over a Steep Shelf. Ecological Safety of Coastal and Shelf Zones of Sea. 2021, 4, 5–26. doi: 10.22449/2413-5577-2021-4-5-26 (in Russian)

15. Rouvinskaya E.A., Tyugin D.Y., Kurkina O.E., Kurkin A.A. Mapping of the Baltic Sea by the Types of Density Stratification in the Context of Dynamics of Internal Gravity Waves. Fundamental and Applied Hydrophysics. 2018, 11, 1, 46–51 doi: 10.7868/S2073667318010057 (in Russian).

16. Grimshaw R., Pelinovsky D., Pelinovsky E., Slunyaev A. Generation of Large-Amplitude Solitons in the Extended Korteweg — de Vries Equation. Chaos. 2002, 12, 4, 1070–1076. doi: 10.1063/1.1521391

17. Nakayama K., Lamb K. Breathers in a three-layer fluid. Journal of Fluid Mechanics. 2020, 903(A40). doi: 10.1017/jfm.2020.653

18. Nakayama K., Lamb K. Breather interactions in a three-layer fluid. Journal of Fluid Mechanics. 2023, 957(A22). doi: 10.1017/jfm.2023.1

19. Lamb K. Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge. Journal of Geophysical Research. 1994, 99(C1), 843–864. doi: 10.1029/93JC02514

20. Rouvinskaya E.A., Kurkina O.E., Kurkin A.A. Dynamics of nonlinear internal gravity waves in layered fluids. Nizhny Novgorod, Publishing house NNSTU n. a. R.E. Alekseev, 2014. 160 p.

21. Boegman L., Ivey G.N., Imberger J. The degeneration of internal waves in lakes with sloping topography. Limnology and Oceanography. 2005, 50, 5, 1620–1637. doi: 10.4319/lo.2005.50.5.1620

22. la Forgia G., Tokyay T., Adduce C., Constantinescu G. Numerical investigation of breaking internal waves. Physical Review Fluids. 2018, 3. doi: 10.1103/PhysRevFluids.3.104801

23. Hall R.A., Huthnance J.M., Williams R.G. Internal wave reflection on shelf slopes with depthvarying stratification. Journal of Physical Oceanography. 2013, 43, 2, 248–258. doi: 10.1175/JPO-D-11-0192.1

24. Mayer F.T., Fringer O.B. An unambiguous definition of the Froude number for lee waves in the deep ocean. Journal of Fluid Mechanics. 2017, 831(R3). doi: 10.1017/JFM.2017.701

25. Michallet H., Ivey G.N. Experiments on mixing due to internal solitary waves breaking on uniform slopes. Journal of Geophysical Research: Oceans. 1999, 104(C6), 13467–13477. doi: 10.1029/1999JC900037

26. Arthur R.S. Numerical investigation of breaking internal waves on slopes: Dynamics, energetics, and transport. Thesis (Ph.D.)-Stanford University. 2015. URL: https://purl.stanford.edu/nx718hm4117

27. Lamb K. On the calculation of the available potential energy of an isolated perturbation in a density-stratified fluid. Journal of Fluid Mechanics. 2008, 597, 415–427. doi: 10.1017/S0022112007009743


Review

For citations:


Sannikov N.A., Kurkina O.E., Rouvinskaya E.A., Kurkin A.A. Transformation of a fully nonlinear breather-like package of internal waves over a bottom step in a layered fluid. Fundamental and Applied Hydrophysics. 2023;16(3):129-141. (In Russ.) https://doi.org/10.59887/2073-6673.2023.16(3)-10

Views: 183


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)