Preview

Fundamental and Applied Hydrophysics

Advanced search

Numerical simulation of tsunami in the system of sevastopol bays

https://doi.org/10.59887/2073-6673.2023.16(3)-4

Abstract

   Within the framework of numerical simulation, a study was made of the penetration of tsunami waves into the system of Sevastopol bays. The non-linear SWASH hydrodynamic model was used to simulate the tsunami propagation. To determine the boundary conditions on the liquid boundary of the computational domain, using the Black Sea tsunami model, the level fluctuations near Sevastopol in the region of depths of 90 m were calculated during the passage of tsunami waves from three potential tsunami foci caused by underwater earthquakes of magnitude 7. It was found that in because of tsunami penetration into the bays of Sevastopol from the nearest focus, the rise in sea level in the tops of the bays could reach 1–2 m. The maximum amplitudes of level fluctuations were received in Pesochnaya and Karantinnaya bays, where they reached 2 m. In the Sevastopol Bay, the level rises were about 0.5–1 m. The most intense fluctuations were observed in the first 3–3.5 hours of the tsunami action. It is shown that the coastal zone of Sevastopol is protected from waves coming from distant foci by Cape Сhersones. Numerical experiments have shown that the protective piers at the entrance to the Sevastopol Bay do not have a significant effect on the sea level fluctuations caused by the tsunami inside the bay.

About the Authors

A. Yu. Belokon
Marine Hydrophysical Institute, Russian Academy of Sciences
Russian Federation

299011

Kapitanskaya Str., 2

Sevastopol



D. I. Lazorenko
Marine Hydrophysical Institute, Russian Academy of Sciences
Russian Federation

299011

Kapitanskaya Str., 2

Sevastopol



V. V. Fomin
Marine Hydrophysical Institute, Russian Academy of Sciences
Russian Federation

299011

Kapitanskaya Str., 2

Sevastopol



References

1. Nikonov A.A., Gusiakov V.K., Fleifel L.D. Assessment of the Tsunami Hazard on the Russian Coast Based on a New Catalogue of Tsunamis in the Black Sea and the Sea of Azov. Russian Geology and Geophysics. 2018, 59(2), 193–205. doi: 10.1016/j.rgg.2018.01.016

2. Yalciner A., Pelinovsky E., Talipova T. et al. Tsunamis in the Black Sea: Comparison of the historical, instrumental and numerical data. Journal of Geophysical Research. Oceans. 2004, 109(C12), C12023. doi: 10.1029/2003JC002113

3. Pelinovsky E.N., Zaitsev A.I. Assessment and mapping of tsunami hazard on the Black Sea coast of Ukraine. Trudy Nizhegorodskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. R.E. Alekseeva. 2011, 3(90), 44–50. URL: https://cyberleninka.ru/article/n/otsenka-i-kartirovanie-opasnosti-tsunami-na-chernomorskom-poberezhie-ukrainy (Accessed 08. 09. 2023) (in Russian).

4. Zaitsev A.I., Pelinovsky E.N., Yalciner A. Forecast of tsunami wave heights on the Black Sea coast of Russia. Trudy Nizhegorodskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. R.E. Alekseeva. 2011, 1, 35–43. URL: https://cyberleninka.ru/article/n/prognoz-vysot-voln-tsunami-na-chernomorskom-poberezhie-rossii (Accessed 08. 09. 2023) (in Russian).

5. Dotsenko S.F. Numerical modeling of tsunamis in the Black, Azov and Caspian seas as a necessary element of regional tsunami early warning systems. Ekologicheskaya Bezopasnost’ Pribrezhnykh i Shel’fovykh Zon i Kompleksnoe Ispol’zovanie Resursov Shel’fa. 2012, 2(26), 287–300.

6. Dotsenko S.F., Ingerov A.V. Characteristics of Tsunami Waves of Seismic Origin in the Black Sea Basin Based on the Results of Numerical Modeling. Morskoy Gidrofizicheskiy Zhurnal. 2013, 3, 25–34 (in Russian).

7. Mazova R. Kh., Kiselman B.A., Osipenko N.N., Kolchina E.A. Analysis of spectral characteristics of Black Sea tsunami. Trudy Nizhegorodskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. R.E. Alekseeva. 2013, 2(99), 52–66 (in Russian). URL: https://cyberleninka.ru/article/n/analiz-spektralnyh-harakteristik-chernomorskih-tsunami (Accessed 08. 09. 2023).

8. Lobkovsky L.I., Mazova R. Kh., Baranova E.A., Tugaryov A.M. Numerical simulation of propagation of the Black Sea and the Azov Sea tsunami through the Kerch Strait. Physical Oceanography. 2018, 25(2), 102–113. doi: 10.22449/1573-160X-2018-2-102-113

9. Baranova E.A., Mazova R. Kh. Tsunami hazard for the Crimean Coast of the Black Sea and the Kerch Strait at the catastrophic tsunamigenic earthquakes, the locations of which are close to that of the historical Yalta earthquake on September 12, 1927. Physical Oceanography. 2020, 27(2), 110–125. doi: 10.22449/1573-160X-2020-2-110-125

10. Nikonov A.A. Tsunami frequency on the shores of the Black and Azov Seas. Fizika Zemli. 1997, 33, 72–87 (in Russian).

11. Nikonov A.A. Unknown earthquake in Crimea. Priroda, 1995, 8, 88–93 (in Russian).

12. Bezushko D.I., Mironenko I.N., Murashko A.V. Tsunami of the Black Sea coast of Ukraine. Vestnik Odesskogo Natsionalnogo Morskogo Universiteta. 2015, 1(43), 82–90 (in Russian). URL: http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Vonmu_2015_1_9 (Accessed 08. 09. 2023).

13. Fomin V.V., Belokon A. Yu., Kharitonova L.V., Alekseev D.V. Numerical Simulation of Tsunami Wave Propagation to the Balaklava Bay. Physical Oceanography. 2022, 29(4), 379–394. URL: https://mhiras.elpub.ru/jour/article/view/710

14. SP 292.1325800.2017. Buildings and Structures on Tsunami Hazardous Areas. Regulations of Design. Moscow, 147 p. (in Russian). URL: https://docs.cntd.ru/document/456088760 (Accessed 08. 09. 2023).

15. SP 14.13330.2018. Seismic Building Design Code. Moscow, 238 p. URL: https://docs.cntd.ru/document/550565571 (Accessed 08. 09. 2023) (in Russian).

16. Stokozov N.A. Morphometric characteristics of the Sevastopol and Balaklava bays. Ekologicheskaya Bezopasnost’ Pribrezhnykh i Shel’fovykh Zon i Kompleksnoe Ispol’zovanie Resursov Shel’fa. 2010, 23, 198–208 (in Russian).

17. Alekseev D.V., Ivanov V.A., Ivancha E.V. et al. Estimation of the effect of protective piers on wind wave parameters in the Sevastopol Bay. Russian Meteorology and Hydrology. 2013, 38(4), 248–255. doi: 10.3103/S1068373913040067

18. SWASH User Manual. SWASH version 7.01 / The SWASH team. Delft: Delft University of Technology. 2012, 144 p.

19. Bazykina A. Yu., Mikhailichenko S. Yu., Fomin V.V. Numerical simulation of tsunami in the Black Sea caused by the earthquake on September 12, 1927. Physical Oceanography. 2018, 25(4), 295–304. doi: 10.22449/1573-160X-2018-4-295-304

20. Ulomov V.I., Polyakova T.P., Shumilina L.S. et al. Experience in mapping earthquake foci. Seismichnost i seismicheskoe rayonirovanie Severnoy Evrazii. Moskva, Institut fiziki Zemli RAN. 1993, 1, 99–108 (in Russian).


Review

For citations:


Belokon A.Yu., Lazorenko D.I., Fomin V.V. Numerical simulation of tsunami in the system of sevastopol bays. Fundamental and Applied Hydrophysics. 2023;16(3):52-61. (In Russ.) https://doi.org/10.59887/2073-6673.2023.16(3)-4

Views: 219


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)