Preview

Fundamental and Applied Hydrophysics

Advanced search

Numerical Study of Submesoscale Features Generation Patterns Within Flow Around Elements of Underwater Terrain

https://doi.org/10.7868/S2073667320040036

Abstract

The article shows a mathematical model to study the characteristics and mechanisms of formation of wave and vortex structures formed by the flow around the obstacle at the scales corresponding to submesoscale phenomena in natural conditions. The problem of flow around a barrier in the form of a hemisphere with a diameter of 20 m with a base at the bottom of a two-layer laminar flow of a viscous incompressible liquid is solved. The vortex dynamics of the flow behind the barrier was resolved explicitly using the hybrid method of detached eddies. Based on numerical experiments, it is shown that in the studied range of Froude number 0.0017–0.0272 the flow process is non-stationary with the formation of coherent vortex structures that grow over time and down the stream to the characteristic scales of the obstacle, and then transfer energy to the wave components.

About the Authors

R. E. Vankevich
Shirshov Institute of Oceanology RAS
Russian Federation

117997, Nahimovsky Pr., 36, Moscow



A. A. Rodionov
Shirshov Institute of Oceanology RAS; St. Petersburg Research Center RAS
Russian Federation

117997, Nahimovsky Pr., 36, Moscow

199034, Universitetskaya Emb., 5, St. Petersburg



References

1. Rogachev K.A. Submesoscale jets on the continental shelf of Peter the Great Bay (Sea of Japan). Issledovanie Zemly is Kosmosa. 2012, 6, 54–60 (in Russian).

2. Zatsepin A.G. et al. Submesoscale eddies at the Caucasus Black Sea shelf and the mechanisms of their generation. Oceanology. 2011, 51, 4, 554–567.

3. Morozov E.G., Marchenko A.V. Short-period internal waves in an arctic fjord (Spitsbergen). Izvestiya. Atmospheric and Oceanic Physics. 2012, 48, 4, 401–408.

4. Karimova S.S. Statistical analysis of submesoscale vortices of the Baltic, Black and Caspian seas based on satellite radar data. Issledovanie Zemly iz Kosmosa. 2012, 3, 31–47 (in Russian).

5. Zimin A.V. Short-period variability of hydrophysical fields and internal wave characteristics during a semidiurnal tidal cycle on the White Sea shelf. Oceanology. 2013, 53, 3, 259–268.

6. Rodionov A.A., Romanenkov D.A., Zimin A.V. et al. Submesoscale processes and dynamics in the White Sea. State of the art and future research. Fundamentalnaya i Prikladnaya Gidrofizika. 2014, 7, 3, 29–41 (in Russian).

7. Munk W., Armi L., Fischer K., Zachariasen F. Spirals on the sea. Proceedings of the Royal Society A. 2000, 456, 1217–1280.

8. Thomas L., Tandon A., Mahadevan A. Submesoscale processes and dynamics. Ocean Modeling in an Eddying, Geophys. Monogr. Ser. 2008, 177, 17–38. doi: 10.1029/177GM04

9. Garrett C., Munk W. Internal waves in the Ocean. Annual Review of Fluid Mechanics. 1979, 11:1, 339–369.

10. Chomaz J.M., Bonneton P., Butet A., Perrier M., Hopfinger E.J. Froude number dependence of the flow separation line on a sphere towed in a stratified fluid. Physics of Fluids A. 1992, 4, 254–258.

11. Townsend A.A. The structure of turbulent shear flow. Cambridge University Press, 1956.

12. Holmes P., Lumley J.L., Berkooz G. Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press, 1996. 386 p.

13. Tkachenko I.V., Rodionov A.A., Safray A.S., Gordeeva S.M. Effects of non-stationarity of the flow around uniformly moving submerged body. Fundamentalnaya i Prikladnaya Gidrofizika. 2018, 11, 4, 3–8 (in Russian).

14. Hinze J.O. Turbulence. McGraw-Hill, 1975. 780 p.

15. Makita H. Turbulence field in a small wind tunnel. Fluid Dynamics Research. 1991, 8, 50–64.

16. Meng H., Hussian F. Holographic particle velocimetry: a 3D measurement technique for vortex interactions, coherent structures and turbulence. Fluid Dynamics Research. 1991, 8, 33–52.

17. Miller A. Secondary flow vortices: A structure in turbulent open channel flow. Structure of Turbulence in Heat and Mass Transfer. 1982. 451 p.

18. Motzfelf H. Frequentzanalyse turbulententer Schwankungen. ZAMM. 1938, 18, 6, 362–365.

19. Raffel M., Willert C.E., Wereley S.T., Kompenhans J. Particle Image Velocimetry. Springer, 2007.

20. Voltzinger N.E., Androsov A.A. Nonhydrostatic dynamics of straits of the World Ocean. Fundamentalnaya i Prikladnaya Gidrofizika. 2016, 9, 1, 26–40.

21. Landau L.D., Lifshitz E.M. Fluid Mechanics. V. 6 (2nd ed.). Butterworth-Heinemann, 1987.

22. Mockett C. A comprehensive study of detached-eddy simulation. Berlin, 2009. 235 p.

23. Spalart P.R. et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics. 2006, 20, 3, 181–195.

24. Shur M.L. et al. A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capabilities. International Journal of Heat and Fluid Flow. 2008, 29, 1638–1649.

25. Ferziger J.H., Peric M. Computational Methods for Fluid Dynamics. Springer Verlag, 2002. 423 р.

26. Gritskevich M.S., Garbaruk A.V., Menter F.R. Fine-tuning of DDES and IDDES formulations to the k-ω Shear Stress Transport model. 4-th European Conference for Aerospace Sciences (EUCASS-4). 2011, 1–10.

27. Weller H.G. A new approach to VOF-based interface capturing methods for incompressible and compressible flows. Technical Report. TR/HGW/04, 2008.

28. Weller H.G., Tabor G., Jasak H., Fureby C. A tensorial approach to computational continuum mechanics using objectoriented techniques. Computers in Physics. 1998, 12, 6. P. 620–631.

29. Crank J., Nicolson P. A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Mathematical Proceedings of the Cambridge Philosophical Society. 1947, 43 (1), 50–67. doi: 10.1017/S0305004100023197

30. Wood J.N., De Nayer G., Schmidt S., Breuer M. Experimental investigation and large-eddy simulation of the turbulent flow past a smooth and rigid hemisphere. Flow, Turbulence and Combustion. 2016, 97 (1), 79–119. doi: 10.1007/s10494-015-9690-5

31. Kang Y.D., Kwing-So Choi. (2006). Control of vortex shedding from a hemisphere by local suction. Journal of Visualization. 2006, 9, 1, 8. doi: 10.1007/BF03181562

32. Tavakol M.M., Abouali O., Yaghoubi M. Large eddy simulation of turbulent flow around a wall mounted hemisphere. Applied Mathematical Modelling. 2015, 39 (13), 3596–3618.


Review

For citations:


Vankevich R.E., Rodionov A.A. Numerical Study of Submesoscale Features Generation Patterns Within Flow Around Elements of Underwater Terrain. Fundamental and Applied Hydrophysics. 2020;13(4):27-38. (In Russ.) https://doi.org/10.7868/S2073667320040036

Views: 105


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)