Estimation of mixing efficiency of a small dimictic lake due to surface cooling
https://doi.org/10.59887/2073-6673.2023.16(2)-6
Abstract
The paper presents the results of studying the mixing of the water mass of a small forest dimictic lake at the stage of summer heating. The wind effect is limited by the small area of the mirror (the size of the lake is 80–110 by 400 m) and the forested shores, so in summer the convective mixing mechanism prevails when the lake surface cools at night. Evaluation of the mixing efficiency η was carried out by the integral energy method, based on the calculations of energy pumping and changes in the background potential energy according to the temperature profile transformation. For this purpose, a chain with 13 highly sensitive temperature sensors was used; the measurements were carried out in the middle of summer 2022 for 35 days with a time interval of one minute. Acoustic current profiler’s data were used to estimate turbulent velocity fluctuations and calculate the energy dissipation rate, which made it possible to make an alternative assessment of the mixing efficiency. The value of η ~0,4 was obtained, which significantly exceeds the “canonical” value of 0,17 for the case of wind mixing.
Keywords
About the Authors
S. R. BogdanovRussian Federation
185030, Aleksander Nevsky st., 50 Petrozavodsk, Republic of Karelia
N. I. Palshin
Russian Federation
185030, Aleksander Nevsky st., 50 Petrozavodsk, Republic of Karelia
R. E. Zdorovennov
Russian Federation
185030, Aleksander Nevsky st., 50 Petrozavodsk, Republic of Karelia
A. V. Mitrokhov
Russian Federation
185030, Aleksander Nevsky st., 50 Petrozavodsk, Republic of Karelia
P. S. Kuznetsov
Russian Federation
185030, Aleksander Nevsky st., 50 Petrozavodsk, Republic of Karelia
J. S. Novikova
Russian Federation
185030, Aleksander Nevsky st., 50 Petrozavodsk, Republic of Karelia
G. E. Zdorovennova
Russian Federation
185030, Aleksander Nevsky st., 50 Petrozavodsk, Republic of Karelia
References
1. Bouffard D., Wüest A. Convection in Lakes. Annual Review of Fluid Mechanics. 2019, 51(1), 189–215. doi:10.1146/annurev-fluid-010518–040506
2. Gregg M.C., D’Asaro E.A., Riley J.J., Kunze E. Mixing Efficiency in the Ocean. Annual Review of Marine Science. 2018, 10, 1, 443–473.
3. Maffioli A., Brethouwer G., Lindborg E. Mixing efficiency in stratified turbulence. Journal of Fluid Mechanics. 2016, 794, R3. doi:10.1017/jfm.2016.206
4. Monismith S.G., Koseff J.R., White B.L. Mixing efficiency in the presence of stratification: when is it constant? Geophysical Research Letters. 2018, 45, 11, 5627–5634. doi:10.1029/2018GL077229
5. Osborn T.R. Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography. 1980, 10, 1, 83–89. doi:10.1175/1520–0485(1980)010<0083:EOTLRO>2.0.CO;2
6. Wunsch C., Ferrari R. Vertical mixing, energy, and the general circulation of the oceans. Annual Review of Fluid Mechanics. 2004, 36, 1, 281–314. doi:10.1146/annurev.fluid.36.050802.122121
7. Gibson C.H. Fossil temperature, salinity, and vorticity turbulence in the ocean — Marine Turbulence Proceedings of the 11th International Liege Colloquium on Ocean Hydrodynamics. Elsevier Oceanography Series. 1980, 28, 221–257.
8. Salehipour H., Peltier W.R. Diapycnal diffusivity, turbulent Prandtl number and mixing efficiency in Boussinesq stratified turbulence. Journal of Fluid Mechanics. 2015, 775, 464–500. doi:10.1017/jfm.2015.305
9. Piccioni F., Casenave C., Lemaire B.J., et al. The thermal response of small and shallow lakes to climate change: new insights from 3D hindcast modelling. Earth System Dynamics. 2021, 12, 2, 439–456. doi:10.5194/esd-12–439–2021
10. Robertson D.M., Imberger J. Lake Number, a Quantitative Indicator of Mixing Used to Estimate Changes in Dissolved Oxygen. Internationale Revue der gesamten Hydrobiologie und Hydrographie. 1994, 79, 2, 159–176. doi:10.1002/iroh.19940790202
11. Winters K., Lombard P., Riley J., D’asaro E. Available potential energy and mixing in density-stratified fluids. Journal of Fluid Mechanics. 1995, 289, 115–128. doi:10.1017/S002211209500125X
12. Wykes M.S.D., Hughes G.O., Dalziel S.B. On the meaning of mixing efficiency for buoyancy-driven mixing in stratified turbulent flows. Journal of Fluid Mechanics. 2015, 781, 261–275. doi:10.1017/jfm.2015.462
13. Peltier W.R., Caulfield C.P. Mixing efficiency in stratified shear flows. Annual Review of Fluid Mechanics. 2003, 35, 1, 135–167. doi:10.1146/annurev.fluid.35.101101.161144
14. Farmer D.H. Penetrative convection in the absence of mean shear. Quarterly Journal of the Royal Meteorological Society. 1975, 101, 430, 869–891. doi:10.1002/QJ.49710143011
15. Bluteau C.E., Jones N.L., Ivey G.N. Turbulent mixing efficiency at an energetic ocean site. Journal of Geophysical Research: Oceans. 2013, 118, 9, 4662–4672. doi:10.1002/jgrc.20292
16. Chen C.-T. A., Millero F.J. Precise thermodynamic properties for natural waters covering only the limnological range. Limnology and Oceanography. 1986, 31, 3, 657–662. doi:10.4319/lo.1986.31.3.0657
17. Jonas T., Terzhevik A.Y., Mironov D.V., Wüest A. Radiatively driven convection in an ice-covered lake investigated by using temperature microstructure technique. Journal of Geophysical Research. 2003, 108, C6, 3183. doi:10.1029/2002JC001316
18. Mason P.J. Large-eddy simulation of the convective atmospheric boundary layer. Journal of Atmospheric Sciences. 1989, 46, 1492–1516. doi:10.1175/1520–0469(1989)046<1492:LESOTC>2.0.CO;2
19. Zikanov O., Slinn D., Dhanak M. Turbulent convection driven by surface cooling in shallow water. Journal of Fluid Mechanics. 2002, 464, 81–111. doi:10.1017/S0022112002001015
20. Kalinowska M.B. Effect of water–air heat transfer on the spread of thermal pollution in rivers. Acta Geophysica. 2019, 67, 2, 597–619. doi:10.1007/s11600–019–00252-y
21. Mironov D.V., Heise E., Kourzeneva E., et al. Implementation of the lake parameterization scheme FLake into the numerical weather prediction model COSMO. Boreal Environment Research. 2010, 15, 218–230.
22. Zdorovennov R., Palshin N., Zdorovennova G., Efremova T., Terzhevik A. Interannual variability of ice and snow cover of a small shallow lake. Estonian Journal of Earth Sciences. 2013, 61, 1, 26–32. doi:10.3176/earth.2013.03
23. Reliable prognosis. URL: https://rp5.ru/ (accessed: 24.01.2023)
24. Volkov S., Bogdanov S., Zdorovennov R., et al. Fine scale structure of convective mixed layer in ice-covered lake. Environmental Fluid Mechanics. 2019, 19, 3, 751–764. doi:10.1007/s10652-018-9652-2
25. Hughes G.O., Gayоn B., Griffiths R.W. Available potential energy in Rayleigh–Bénard convection. Journal of Fluid Mechanics. 2013, 729, R3. doi:10.1017/jfm.2013.353
26. Ulloa H.N., Wüest A., Bouffard D. Mechanical energy budget and mixing efficiency for a radiatively heated ice-covered waterbody. Journal of Fluid Mechanics. 2018, 852, R1. doi:10.1017/jfm.2018.587
27. Deardorff J.W. Preliminary results from numerical integrations of the unstable planetary boundary layer. Journal of the Atmospheric Sciences. 1970, 27, 1209–1211. doi: https://doi.org/10.1175/1520–0469(1970)027<1209:PRFNIO>2.0.CO;2
Review
For citations:
Bogdanov S.R., Palshin N.I., Zdorovennov R.E., Mitrokhov A.V., Kuznetsov P.S., Novikova J.S., Zdorovennova G.E. Estimation of mixing efficiency of a small dimictic lake due to surface cooling. Fundamental and Applied Hydrophysics. 2023;16(2):73-88. (In Russ.) https://doi.org/10.59887/2073-6673.2023.16(2)-6