Study of the structure and intensity of density currents in the shelf-slope region in the Antarctic
https://doi.org/10.59887/2073-6673.2023.16(2)-4
Abstract
The research involves the examination of modeling outcomes regarding the density structure and baroclinic dynamics of Antarctic shelf waters (ASW) within the shelf-slope area, encompassing a wide range of extreme weather conditions. We used a small-scale non-hydrostatic Fluidity-ICOM model to understand the formation and persistence of quasi-stationary polynyas in the Antarctic, which play a role in enhancing the formation of ASW. The salt fluxes, or buoyancy, are calculated for different forms of ice formation, namely static ice formation in young ice-covered polynyas and dynamic intra-water ice formation, which is considered the most effective and occurs in open water polynyas. Based on the intensification of ASW formation and its spread, three distinct modes of propagation along the continental slope have been identified: non-wave or subcritical mode, vortex mode, and wave or supercritical mode, which is characterized by rapid flow. The classification into different modes is determined by the internal Froude number (Fr) estimates. At the moment when the most developed stage of near-bottom density currents are transformed on a slope, the spatial dimensions of meanders, eddies, or frontal waves were found to be similar in magnitude, as well as their thickness. This observation aligns with model calculations of the local baroclinic Rossby deformation radius (RdL) for these currents. These findings agree with comparable assessments of the baroclinic Rossby deformation radius (RdL) for the Antarctic Slope Front (ASF) in the Commonwealth Sea, which were based on field observations. Additionally, the calculated propagation velocities of density currents and the density gradients at their boundaries coincide with the data obtained from field measurements. By estimating the volumetric fluxes (qv) and specific fluxes (ql) of ASW along the continental slope near the Cape Darnley coastal polynya area in the Commonwealth Sea, we can determine the contribution of ASW cascading to the formation of bottom waters under different flux regimes. The precision and accuracy of the qv and ql estimates are ensured through small-scale calculations using the non-hydrostatic Fluidity-ICOM model. These calculations consider the occurrences of intensified ASW formation in open water polynyas. Numerical experiments have revealed that a four-fold increase in a spatial step X results in an underestimation of qv by approximately 30%. As a consequence, in large-scale and even mesoscale hydrostatic models, such underestimation of qv and ql may be unsatisfactory (several times lower).
Keywords
About the Authors
P. N. GolovinRussian Federation
199397, Berings Str., 38, St Petersburg
M. S. Molchanov
Russian Federation
199397, Berings Str., 38, St Petersburg
References
1. Foster T.D., Carmack E.C. Frontal zone mixing and Antarctic bottom water formation in the southern Weddell Sea. Deep Sea Res. 1976, 23, 301–317. doi:10.1016/0011–7471(76)90872-X
2. Foster, T.D., Foldvik A., Middleton J.H. Mixing and bottom water formation in the shelf break region of the southern Weddell Sea. Deep Sea Res. 1987, 34, 11, 1771–1794. doi:10.1016/0198-0149(87)90053-7
3. Fahrbach E., Rohardt G., Scheele N., et al. Formation and discharge of deep and bottom water in the northwestern Weddell Sea. J. Mar. Res. 1995, 53, 4, 515–538. doi:10.1357/0022240953213089
4. Foldvik A., Kvinge T., Torresen T. Bottom currents near the continental shelf break in the Weddell Sea. In: Oceanology of the Antarctic Continental Shelf. Antarctic Research Series. 1985, 43, 5–20. doi:10.1029/AR043p0021
5. Foldvik A., Gammelsrod T., Osterhus S., et al. Ice shelf water overflow and bottom water formation in the southern Weddell Sea. J. Geophys. Res. 2004, 109, С02015. doi:10.1029/2003JC002008
6. Baines P.G., Condie S.A. Observations and modelling of Antarctic downslope flows: a review. In: Ocean, ice, and atmosphere: interactions at the Antarctic continental margin. Antarctic Research Series. 1998, 75, 29–49. doi:10.1029/AR075p0029
7. Fuseo G., Budillon G., Sperie G. Surface heat fluxes and thermohaline variability in the Ross Sea and Terra Nova Bay polynya. Cont. Shelf Res. 2009, 29, 1887–1895. doi:10.1016/j.csr.2009.07.006
8. Ohshima K.I., Fukamachi Y., Williams G.D., Nihashi S. et al. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nat. Geosci. 2013, 6(3), 235–240. doi:10.1038/ngeo1738
9. Snow K., Sloyan B.M., Rintoul S.R., Hogg A.M., Downes S.M. Controls on circulation, cross-shelf exchange, and dense water formation in an Antarctic polynya. Geophys. Res. Lett. 2016, 43, 7089–7096. doi:10.1002/2016GL069479
10. Snow K., Hogg A.M., Sloyan B.M., Downes S.M. Sansitivity of Antarctic bottom water to changes in surface buoyance fluxes. J. Clim. 2016, 29, 313–330. doi:10.1175/JCLI-D-15-0467.1
11. Williams G.P., Herraiz-Borreguero L., Roquet F., Tamura T., et al. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay. Nat. Commun. 2016, 7, 12577. doi:10.1038/ncomms12577
12. Ackley S.F. et al. Sea-ice production and air/ice/ocean/ biogeochemistry interactions in the Ross Sea during the PIPERS2017 autumn field campaign. Annals of Glaciology. 2020, 61(82), 181–195. doi:10.1017/aog.2020.31
13. De Pace L. et al. Frazil ice growth and production during katabatic windevents in the Ross Sea, Antarctica. The Cryosphere. 2020, 14, 3329–3347. doi:10.5194/tc-14–3329-2020
14. Golovin P.N. Conditions of the formation and runoff of shelf waters in different water areas of the Arctic and Antarctic. Russ. Meteorol. Hydrol. 2012, 37, 752–761. doi:10.3103/S106837391211009X
15. Golovin P.N., Antipov N.N., Klepikov A.V. Peculiarities of Dense Water Cascading off the Deep Part of Antarctic Continental Slope (A Case Study for the Commonwealth Sea). Russ. Meteorol. Hydrol. 2018, 43, 852–861. doi:10.3103/S1068373918120063
16. Golovin P.N., Antipov N.N., Klepikov A.V. et al. Spatial Patterns of Dense Water Runoff on the Antarctic Shelf and Continental Slope. Russ. Meteorol. Hydrol. 2022, 47, 882–895. doi:10.3103/S1068373922110085
17. Golovin P.N., Antipov N.N., Klepikov A.V. Mechanisms of Deep and Bottom Water Ventilation over the Antarctic Continental Slope. Russ. Meteorol. Hydrol. 2019, 44, 404–415. doi:10.3103/S1068373919060050
18. Golovin P.N., Antipov N.N., Klepikov A.V. Downflow of the Antarctic shelf water at the shelf and continental slope of the Commonwealth Sea in the summer season and its effect on the bottom water formation in the Southern Ocean. Oceanology. 2011, 51, 370–384. doi:10.1134/S000143701103009X
19. Golovin P.N., Antipov N.N., Klepikov A.V. Studying the stability of the Antarctic slope front in the Commonwealth Sea. Russ. Meteorol. Hydrol. 2013, 38, 766–775. doi:10.3103/S106837391311006X
20. Golovin P.N., Antipov N.N., Klepikov A.V. Intrusive layering of the Antarctic slope front. Oceanology. 2016, 56, 470–482. doi:10.1134/S0001437016030085
21. Martin S. Frazil ice in rivers and oceans. Ann. Rev. Fluid Mech. 1981, 13, 379–397.
22. Monahov E.I. The conditions of the intra-water ice formation (P.h.D. monography). Collections RFSI AARI, 1989.
23. Golovin P.N. The role of quasi-stationary flaw polynya in formation of dense shelf waters in the wintertime and their subsequent slope cascading (the Laptev Sea case study). Russ. Meteorol. Hydrol. 2008, 33, 718–731. doi:10.3103/S106837390811006X
24. Ohshima K.I. Direct observations of coastal polynyas and glacier-ocean interaction in the East Antarctica. Presentation from the OASIIS Workshop. 2017, Bremerhaven. Germany. 14–17th June. URL: https://soos.aq/images/soos/activities/cwg/oasiis/presentations2017/Wednesday/6_oasiis_kay_ohshima.pdf
25. Zakharov V.F. The role of the fast-ice polynya in the hydrological and ice regime of the Laptev Sea. Oceanology. 1966, 6, 1014–1022 (in Russian).
26. Martin S., Cavalieri D.J. Contributions of the Siberian shelf polynyas to the Arctic Ocean intermediate and deep water. J. Geophys. Res. 1989, 94, 12725–12738. doi:10.1029/JC094iC09p12725
27. Cavalieri D.J., Martin S. The contribution of Alaskan, Siberian, and Canadian coastal polynyas to cold halocline layer of the Arctic Ocean. J. Geophys. Res. 1994, 99, C9, 18343–18362. doi:10.1029/94JC01169
28. Schumacher J.D., Aagaard K., Pease C.H., Tripp R.B. Effects of a shelf polynya on flow and water properties in the northern Bering Sea. J. Geophys. Res. 1983, 88, 2723–2732. doi:10.1029/JC088iC05p02723
29. Smith S.D., R.D. Muench, Pease C.H. Polynyas and leads: An overview of physical processes and environment. J. Geophys. Res. 1990, 95, C6, 9461–9479. doi:10.1029/JC095IC06P09461
30. Smith S.D., Anderson R.J., G. et al. An investigation of a polynya in the Canadian archipelago, 2, Structure of turbulence and sensible heat flux. J. Geophys. Res. 1983, 88, 2900–2910. doi:10.1029/JC088iC05p02900
31. Golovin P.N., Molchanov M.S. Fine-scale modeling of water dynamics on the shelf and continental slope in the Antarctic. Russ. Meteorol. Hydrol. 2023, 6, 21–43. doi:10.52002/0130-2906-2023-6-21-43 (in Russian).
32. Piggott M.D., Gorman G.J. et al. A new computational framework for multi-scale ocean modelling based on adapting unstructured meshes. Int. J. Numer. Meth. Fluids. 2008, 56, 1003–1015. doi:10.1002/fld.1663
33. Chen C.T., Millero F.J. Effect of salt content on the temperature of maximum density and static stability in Lake Ontario. Limnology and Oceanography. 1977, 22, 1, 158–159.
34. Galerkin B.G. Rods and plates. Series in some questions of elastic equilibrium. News magazine of engineers. 1915, 19, 897–908 (in Russian).
35. Hiester H.R. The application of adaptive mesh techniques to numerical simulations of gravity current flows. Thesis or dissertation. 2011a. Imperial College London. doi:10.25560/9227
36. Wolkov A.V., Lyapunov S.V. Investigation of the efficiency of using high-order accuracy numerical schemes for solving the Navier–Stokes and Reynolds equations on unstructured adaptive grids. Computational Mathematics and Mathematical Physics. 2006, 46, 10, 1808–1820. doi:10.1134/S0965542506100162
37. Smagorinsky J. General circulation experiments with the primitive equations. I. The basic experiment. Mon. Wea. Rev. 1963, 91, 99–164. doi:10.1175/1520–0493(1963)091<0099:GCEWTP>2.3.CO;2
38. Davies D.R., Wilson C.R., Kramer S.C. Fluidity: A fully unstructured anisotropic adaptive mesh computational modelling framework for geodynamics. Geochem. Geophys. Geosyst. 2011, 12, Q06001. doi:10.1029/2011GC003551
39. Piggott M.D., Farrell P.E., Wilson C.R., Gorman G.J., Pain C.C. Anisotropic mesh adaptivity for multi-scale ocean modelling. Philosophical Transactions of The Royal Society A: Mathematical, Physical and Engineering Sciences. 2009, 367(1907), 4591–4611.
40. Hiester H.R., Piggott M.D., Allison P.A. The impact of mesh adaptivity on the gravity current front speed in a two-dimensional lock-exchange. Ocean Modelling. 2011b, 38, 1–2, 1–21. doi:10.1016/j.ocemod.2011.01.003
41. Hiester H.R., Piggott M.D., Farrell P.E., Allison P.A. Assessment of spurious mixing in adaptive mesh simulations of the two-dimensional lock-exchange. Ocean Modelling. 2014, 73, 30–44. doi:10.1016/j.ocemod.2013.10.003
42. Jacobs C.T., Collins G.S., Piggott M.D., Kramer S.C., Wilson C.R.G. Multiphase flow modelling of volcanic ash particle settling in water using adaptive unstructured meshes. Geophys. J. Int. 2013, 192, 2, 647–665. doi:10.1093/gji/ggs059
43. Wendler G., Stearns C., Weidner G., Durgaund G., Parish T.R. On the extraordinary katabatic winds of Adelie Land. J. Geophys. Res. 1997, 102, 4463–4474.
44. Parish T.R., Walker R. A re-examination of the winds of Adelie Land, Antarctica. Aust. Met. Mag. 2006, 55, 105–117.
45. Parish T.R. Surface winds over the Antarctic continent: A review. Rev. Geophys. 1988, 26, 1, 169–180. doi:10.1029/RG026i001p00169
46. Tamura T., Ohshima K.I., Nihashi S. Mapping of sea ice production for Antarctic coastal polynya. Geophys. Res. Lett. 2008, 35, L07606. doi:10.1029/2007GL032903
47. Martin S., Kauffman Р. А field and laboratory study of wave damping by grease ice. J. Glaciol. 1981, 27, 281–314.
48. Pease C.H. The size of wind-driven coastal polynyas. J. Geophys. Res. 1987, 92, 7049–7059. doi:10.1029/JC092iC07p07049
49. Winsor P., Bjork G. Polynya activity in the Arctic Ocean from 1958 to 1997. J. Geophys. Res. 2000, 105, C4, 8789–8803. doi:10.1029/1999JC900305
50. Danielson S., Aagaard K., Weingartner T., Martin S., Winsor P., Gawarkiewicz G., Quadfasel D. The St. Lawrence polynya and the Bering shelf circulation: New observations and a model comparison. J. Geophys. Res. 2006, 111, C9, 1029– 1057. doi:10.1029/2005JC003268
51. Drucker R., Martin S. Observation of ice thickness and frazil ice in the St. Lawrence Island polynya from satellite imagery, upward looking sonar, and salinity/temperature moorings. J. Geophys. Res. 2003, 108, C5, 3149–3167. doi:10.1029/2001JC001213
52. Golovin P.N. Convective Mass-transfer in the Sub-ice Layer of Winter Leads in the Arctic Basin. Oceanology. 1995, 35, 6, 854–863 (in Russian).
53. Makshtas A.P. Thermal balance of Arctic ice in winter. Leningrad, Gidrometeoizdat, 1984. 67 p. (in Russian).
54. Doronin Yu.P., Heisin D.E. Sea ice. Leningrad, Gidrometeoizdat, 1980 (in Russian).
55. Weeks W.F., Ackley S. The growth, structure and properties of sea ice. Hanover (N.H.): U.S. Cold Region Research and Engineering Lab. Springfield. Va. available from N.T. I. S. 1982. 130 p.
56. Zatsepin A.G., Kostianoy A.G., Semenov A.V. Laboratory study of axisymmetric density flow on an inclined bottom in a rotating fluid. Oceanology. 1996, 36, 339–346 (in Russian).
57. Zatsepin A.G., Grizenko V.A. et. al. Laboratory and Numerical Studies of the Propagation of Density Currents along the Bottom Slope. Oceanology. 2005, 45, 1, 5–15 (in Russian).
58. Shapiro G.I., Zatsepin A.G. Gravity current down a steeply inclined slope in rotating fluid. Ann. Geophys. 1997, 15, 366– 374. doi:10.1007/s00585–997–0366-x
59. Turner J. Buoyancy Effects in Fluids (Cambridge Monographs on Mechanics). Cambridge University Press. doi:10.1017/CBO9780511608827
60. Mensah V., Yoshihiro Nakayama Y., Fujii M., Nogi Y., Ohshima K.I. Dense water downslope flow and AABW production in a numerical model: Sensitivity to horizontal and vertical resolution in the region off Cape Darnley polynya. Ocean Modelling. 2021, 165, 101843. doi:10.1016/j.ocemod.2021.101843
61. Voltzinger N.E., Androsov A.A. Modelling long-wave dynamics on the continental slope of the ocean and areas of sharp depth variation. Fundamental and Applied Hydrophysics. 2020, 13, 4, 16–26. doi:10.7868/S2073667320040024 (in Russian).
62.
Review
For citations:
Golovin P.N., Molchanov M.S. Study of the structure and intensity of density currents in the shelf-slope region in the Antarctic. Fundamental and Applied Hydrophysics. 2023;16(2):44-63. https://doi.org/10.59887/2073-6673.2023.16(2)-4