Preview

Fundamental and Applied Hydrophysics

Advanced search

Group velocity and dispersion of Buchwald and Adams shelf waves. A new analytical approach

https://doi.org/10.59887/2073-6673.2023.16(2)-1

Abstract

In this paper, a new analysis of the known topographic models of Rossby waves for piecewise exponential topography profiles is performed. A mathematical method is proposed that allows us to find analytically the group velocity and variance. A numerical comparison is made of the relations presented in the study of Buchwald and Adams and the dependencies obtained within the framework of a new analytical approach. Numerical comparative analysis showed that the discrepancy for the phase velocities lies in the range of five percent. For group speeds, the discrepancy reaches nineteen percent for the first mode and decreases for higher mode numbers. We also consider long-wave asymptotics of eigenfunctions. It is established that the long-wave limit for Rossby shelf waves has specifics: the longitudinal wave number tends to zero, and the transverse wave number reaches a certain finite positive constant, which is the greater the higher the mode number. It is shown that in the long-wave limit, Rossby shelf waves transform into shelf topographic currents, while there is a certain self-similarity for the phase and group velocities of shelf currents depending on the value of the topography gradient.

About the Authors

V. G. Gnevyshev
Shirshov Institute of Oceanology RAS
Russian Federation

117997, Nahimovsky Pr., 36, Moscow



V. S. Travkin
St. Petersburg State University; N.N.Zubov’s State Oceanographic Institute, Roshydromet
Russian Federation

199034, 7–9, Universitetskaya Nab., St. Petersburg

119034, 6, Kropotkinskiy Lane, Moscow



T. V. Belonenko
St. Petersburg State University
Russian Federation

199034, 7–9, Universitetskaya Nab., St. Petersburg



References

1. Allen J. Models of wind-driven currents on the continental shelf. Ann. Rev. Fluid Mech. 1980, 12, 389–433. doi:10.1146/annurev.fl.12.010180.002133

2. Mysak L.A., Recent advances in shelf wave dynamics. Rev. Geophys. 1980, 18, 211–241. doi:10.1029/RG018i001p00211

3. Brink K.H. Coastal-trapped waves and wind-driven currents over the continental shelf. Ann. Rev. Fluid Mech. 1991, 23, 389–412. doi:10.1146/annurev.fl.23.010191.002133

4. LeBlond P., Mysak L.A. Waves in the ocean. Elsevier Scientific Publishing Company. 1977. 602 p.

5. Gnevyshev V.G., Frolova A.V., Kubryakov A.A., Sobko Yu.V., Belonenko T.V. Interaction between Rossby Waves and a jet flow: Basic equations and verification for the Antarctic Circumpolar Current. Izvestiya, Atmospheric and Oceanic Physics. 2019, 55(5), 412–422. doi:10.1134/S0001433819050074

6. Gnevyshev V.G., Frolova A.V., Koldunov A.V., Belonenko T.V. Topographic effect for Rossby waves on a zonal shear flow. Fundamental and Applied Hydrophysics. 2021, 14, 1, 4–14. doi:10.7868/S2073667321010019

7. Gnevyshev V.V., Frolova A.V., Belonenko T.V. Topographic effect for Rossby waves on non-zonal shear flow. Water Resour. 2022, 49, 2, 240–248. doi:10.1134/S0097807822020063

8. Hamon B. The spectrums of mean sea level at Sydney, Coff’s Harbour, and Lord Howe Island. J. Geophys. Res. 1962, 67, 5147–5155. doi:10.1029/JZ067i013p05147

9. Camayo R., Campos E.J. Application of wavelet transform in the study of coastal trapped waves off the west coast of South America. Geophys. Res. Lett. 2006, 33, L22601. doi:10.1029/2006GL026395

10. Schulz W.J., Jr., Mied R.P., Snow C.M. Continental shelf wave propagation in the Mid-Atlantic Bight: A general dispersion relation. J. Phys. Oceanogr. 2012, 42, 558–568. doi:10.1175/JPO-D-11–098.1

11. Chen N., Han G., Yang J., Chen D. Hurricane Sandy storm surges observed by Hy-2a satellite altimetry and tide gauges. J. Geophys. Res. Oceans. 2014, 119, 4542–4548. doi:10.1002/2013JC009782

12. Belonenko T.V., Volkov D.L., Koldunov A.V. Shelf waves in the Beaufort Sea in a high-resolution ocean model. Oceanology. 2018, 58(6), 778–785. doi:10.1134/S0001437018060024

13. Woodham R., Brassington G.B., Robertson R., Alves O. Propagation characteristics of coastally trapped waves on the Australian continental shelf. J. Geophys. Res. Oceans. 2013, 118, 4461–4473. doi:10.1002/jgrc.20317

14. Sandalyuk N.V., Belonenko T.V., Koldunov A.V. Shelf waves in the Great Australian Bight based on satellite altimetry data. Izv. Atmos. Ocean. Phys. 2021, 57, 1117–1126. doi:10.1134/S0001433821090619

15. Wilkin J.L. Scattering of coastal-trapped waves by irregularities in coastline and topography. Ph.D. thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1988, 120 p. doi:10.1575/1912/4956

16. Huthnance J.M. On coastal trapped waves: analysis and numerical calculation by inverse iteration. J. Phys. Oceanogr. 1978, 8, 74–92.

17. Huthnance J.M. Circulation, exchange and water masses at the ocean margin: the role of physical processes at the shelf edge. Prog. Oceanogr. 1995, 35, 353–431. doi:10.1016/0079–6611(95)80003-C

18. Sansón L.Z. Simple models of coastal-trapped waves based on the shape of the bottom topography. J. Phys. Oceanogr. 2012, 42, 420–429. doi:10.1175/JPO-D-11–053.1

19. Middleton J.F., Bye J.A. A review of the shelf-slope circulation along Australia’s southern shelves: Cape Leeuwin to Portland. Prog. Oceanogr. 2007, 75, 1–41, doi:10.1016/j.pocean.2007.07.001

20. Echevin V., Albert A., Lévy M., Graco M., Aumont O., Piétri A., Garric G. Intraseasonal variability of nearshore productivity in the Northern Humboldt Current System: The role of coastal trapped waves. Cont. Shelf Res. 2014, 73, 14–30. doi:10.1016/j.csr.2013.11.015

21. Efimov V.V., Kulikov E.A., Rabinovich A.B., Fine I.V. Waves in the ocean boundary regions. Leningrad, Gidrometeoizdat, 1985, 250 p. (in Russian).

22. Huthnance J.M. On trapped waves over a continental shelf. J. Fluid Mech. 1975, 69, 689–704.

23. Pedlosky J. Geophysical Fluid Dynamics. 1st ed. Springer-Verlag, 1982. 636 pp.

24. Ball F. Edge waves in an ocean of finite depth. Deep-Sea Res. Oceanogr. Abstr. 1967, 14, 79–88. doi:10.1016/0011–7471(67)90030–7

25. Buchwald V.T., Adams J.K. The propagation of continental shelf waves. Proc. R. Soc. Lond. A. 1968, 305(1481), 235– 250. doi:10.1098/rspa.1968.0115

26. Gnevyshev V.G., Travkin V.S., Belonenko T.V. Topographic factor and limit transitions in the equations for subinertial waves. Fundamental and Applied Hydrophysics. 2023, 16, 1, 8–23. doi:10.48612/fpg/92rg-6t7h-m4a2

27. Dukhovskoy D.S., Morey S.L., O’Brien J.J. Influence of multi-step topography on barotropic waves and consequences for numerical modeling. Ocean Modelling. 2006, 14(1–2), 45–60. doi:10.1016/j.ocemod.2006.03.002

28. Drivdal M., Weber J.E.H., Debernard J.B. Dispersion relation for continental shelf waves when the shallow shelf part has an arbitrary width: Application to the shelf west of Norway. J. Phys. Oceanogr. 2016, 46(2), 537–549. doi:10.1175/jpo-d-15–0023.1

29. Clarke A.J. Observational and numerical evidence for wind-forced coastal trapped long waves. J. Phys. Oceanogr. 1977, 7, 231–247.

30. Mysak L.A., Leblond P.H., Emery W.J. Trench waves. J. Phys. Oceanogr. 1979, 9(5), 1001–1013. doi:10.1175/1520–0485(1979)009<1001:TW>2.0.CO;2

31. Gnevyshev V.G., Badulin S.I. On the asymptotics of multidimensional linear wave packets: Reference solutions. Moscow University Physics. 2017, 72(4), 415–423. doi:10.3103/S0027134917040075

32. Travkin V.S., Belonenko T.V., Kochnev A.V. Topographic waves in the Kuril Region. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2022, 19(5), 222–234. doi:10.21046/2070-7401-2022-19-5-222-234 (In Russian).


Review

For citations:


Gnevyshev V.G., Travkin V.S., Belonenko T.V. Group velocity and dispersion of Buchwald and Adams shelf waves. A new analytical approach. Fundamental and Applied Hydrophysics. 2023;16(2):8-20. (In Russ.) https://doi.org/10.59887/2073-6673.2023.16(2)-1

Views: 284


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)