Preview

Fundamental and Applied Hydrophysics

Advanced search

On the Influence of Spatial Fluctuations of the Water Inherent Optical Properties on the Energy of a Lidar Echo Signal Coming from a Water

https://doi.org/10.59887/fpg/1gan-g7mu-dk9p

Abstract

Theoretical models of the statistical characteristics of the lidar echo signal have been developed to interpret the results of optical sounding of heavily eutrophicated water bodies. Formulas are obtained for calculating the statistically average value and coefficient of variation of the energy of the elastic backscattering signal coming from the near-surface layer of water with randomly inhomogeneous absorption and scattering coefficients. Examples of the dependence of the indicated signal characteristics on the coefficients of variation of the optical characteristics of water are given. It has been established that fluctuations in the absorption coefficient lead to an increase in the average energy of the received signal, and fluctuations in the scattering coefficient to its slight decrease. A significant decrease in the average echo signal energy can be observed with cross-correlated fluctuations in the absorption and scattering coefficients, i. e. in the case when the attenuation coefficient fluctuates at a constant single scattering albedo. Considerations are made on how algorithms for estimating the average values of the optical characteristics of water and the parameters of their inhomogeneities from the average value and the coefficient of variation of the echo signal energy can be constructed.

About the Author

L. S. Dolin
Institute of Applied Physics RAS; Lobachevsky State University of Nizhny Novgorod
Russian Federation

603950, Ulyanova Str., 46, Nizhny Novgorod

603950, Gagarin Avenue, 23, Nizhny Novgorod



References

1. Dolin L.S., Savel’ev V.A. Backscattering signal characteristics at pulse narrow beam illumination of a turbid medium. Izvestiya Academy of Science USSR, Atmospheric and Oceanic Physics. 1971, 7, 5, 505–510 (in Russian).

2. Bravo-Zhivotovsky D.M., Gordeev L.B., Dolin L.S., Mochenev S.B. Determining the absorption and scattering coefficients of sea water by some characteristics of a light field of artificial light sources. Hydrophysical and hydrooptics investigations in the Atlantic and the Pacific Oceans / Ed. By Monin A.S., Shifrin K.S. M., Nauka, 1974, 153–158 (in Russian).

3. Ocean optics / Ed. By Monin A.S. M., Nauka, 1983. Vol. 1. Physical optics of the ocean. 371 p. (in Russian).

4. Billard B., Abbot R.H., Penny M.F. Airborne estimation of sea turbidity parameters from the WRELANDS laser airborne depth sounder. Applied Optics. 1986, 25, 2080–2088.

5. Bravo-Zhivotovsky D.M., Dolin L.S., Savel’ev V.A., Fadeev V.V., Shchegol’kov Yu.B. Optical methods for sounding of the ocean: laser remote sensing. Methods of Remote Sensing of the Ocean / Ed. By Bravo-Zhivotovsky D.M., Dolin L.S. Institute of Applied Physics, Gorky, USSR, 1987, 84–125 (in Russian).

6. Hoge F.E., Wright C.W., Krabill W.B., Buntzen R.R., Gilbert G.D., Swift R.N., Yungel J.K., Berry R.E. Airborne lidar detection of subsurface oceanic scattering layers. Applied Optics. 1988, 27, 3969–3977.

7. Vasilkov A.P., Kondranin T.V., Myasnikov E.V. Determination of the profile of the light scattering index from the polarization characteristics of back-reflected radiation in pulsed sounding of the ocean. Izvestiya Academy of Science USSR, Atmospheric and Oceanic Physics. 1990, 26, 3, 307–312 (in Russian).

8. Dolin L.S., Levin I.M. Handbook on the Theory of Underwater Vision. Leningrad, Gidrometeoizdat, 1991. 230 p. (in Russian).

9. Dolin L.S., Levin I.M. Optics, Underwater. Encyclopedia of Applied Physics. VCH Publishers, 1995, 12, 571–601.

10. Vasilkov A.P., Goldin Yu.A., Gureev B.A. Determination of the vertical distribution of the seawater scattering index using an aviation polarization lidar. Izvestiya, Atmospheric and Oceanic Physics. 1997, 33, 4, 563–569 (in Russian).

11. Vasilkov A.P., Goldin Y.A., Gureev B.A., Hoge F.E., Swift R.N., Wright C.W. Airborne polarized lidar detection of scattering layers in the ocean. Applied Optics. 2001, 40, 24, 4353–4364. doi:10.1364/AO.40.004353

12. Bissonnette L.R., Roy G., Poutier L., Cober S.G., Isaac G.A. Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements. Applied Optics. 2002, 41, 30, 6307–6324. doi:10.1364/AO.41.006307

13. Feygels V.I., Kopilevich Y.I., Surkov A., Yangel J.K., Behrenfeld M.J. Airborne lidar system with variable field-of-view receiver for water optical measurements. Proceedings of SPIE. Ocean Remote Sensing and Imaging II. 2003, 5155, 12–21.

14. Kokhanenko G.P., Krekova M.M., Penner I.E., Shamanaev V.S. Detection of hydrosol inhomogeneities by a polarizing lidar. Atmospheric and Oceanic Optics. 2004, 17, 9, 750–758. (in Russian).

15. Kopilevich Yu., Feygels V.I., Tuell G.H., Surkov A. Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): I. Theoretical background. Proceedings of SPIE. 2005, 5885, 9 p.

16. Tuell G.H., Feygels V., Kopilevich Yu., Weidemann A.D., Cunningham A.G., Mani R., Podoba V., Ramnath V., Park J.Y., Aitken J. Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data. Proceedings of SPIE. 2005, 5885, 13 p.

17. Hoge F.E. Oceanic inherent optical properties: proposed single laser lidar and retrieval theory. Applied Optics. 2005, 44, 34, 7483–7486. doi:10.1364/AO.44.007483

18. Churnside J.H., Thorne R.E. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton. Applied Optics. 2005, 44, 26, 5504–5514. doi:10.1364/AO.44.005504

19. Zege E., Katsev I., Prikhach A. Retrieval of seawater inherent optical properties profiles from lidar waveforms. Proceedings of SPIE. 2007, 6615, 66150B, 10 p.

20. Dolina I.S., Dolin L.S., Levin I.M., Rodionov A.A., Savel’ev V.A. Inverse problems of lidar sensing of the ocean In: Current Research on Remote Sensing, Laser Probing, and Imagery in Natural Waters. Proceeding of SPIE. 2007, 6615, 66150C — 1–10.

21. Dolin L.S. Lidar method for measurement of the modulation transfer function of water layers. Fundamental and Applied Hydrophysics. 2010, 3(9), 62–71 (in Russian).

22. Kokhanenko G.P., Balin Yu.S., Penner I.E., Shamanaev V.S. Lidar and in situ measurements of optical parameters of water surface layers in Lake Baikal. Atmospheric and Oceanic Optics. 2011, 24, 478–486. doi:10.1134/S1024856011050083

23. Palmer S.C.J., Pelevin V.V., Goncharenko I., Kovács A.W., Zlinszky A., Présing M., Horváth H., Nicolás-Perea V., Balzter H., Tóth V.R. Ultraviolet fluorescence LiDAR (UFL) as a measurement tool for water quality parameters in turbid lake conditions. Remote Sensing. 2013, 5, 4405–4422. doi:10.3390/rs5094405

24. Pelevin V., Zavialov P., Konovalov B., Abramov O., Grabovskiy A., Goncharenko I. Remote Laser Sensing of the Seas and Inland Waters Bodies using Portable Fluorescent Lidars(UFL series). Proceedings of VIII International Conference “Current problems in optics of natural waters” (ONW’2015). St. Petersburg, 2015, 179–184 (in Russian).

25. Glukhov V.A., Goldin Yu.A., Rodionov M.A. Experimental estimation of the capabilities of the lidar PLD-1 for the registration of various hydro-optical irregularities of the sea water column. Fundamental and Applied Hydrophysics. 2017, 10, 2, 41–48. doi:10.7868/S207366731702006X (in Russian).

26. Glukhov V.A., Goldin Yu.A., Rodionov M.A. Method of Internal Waves Registration by Lidar Sounding in Case of Waters with Two-Layer Sratification of Hydrooptical Characteristics. Fundamental and Applied Hydrophysics. 2021, 14, 3, 86–97. doi:10.7868/S2073667321030084 (in Russian).

27. Lednev V.N., Grishin M. Ya., Pershin S.M., Bunkin A.F., Kapustin I.A., Molkov A.A., Ermakov S.A. Laser remote probing of freshwater reservoir with high phytoplankton concentration. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2016, 13, 1, 119–134 (in Russian). doi:10.21046/2070-7401-2016-13-1-119-134

28. Grishin M. Ya., Lednev V.N., Pershin S.M., Bunkin A.F., Kobylyanskiy V.V., Ermakov S.A., Kapustin I.A., Molkov A.A. Laser remote sensing of an algal bloom in a freshwater reservoir. Laser Physics. 2016, 26, 125601 (8pp). doi:10.1088/1054–660X/26/12/125601

29. Molkov A.A., Kapustin I.A., Shchegolkov Yu.B., Vodeneeva E.L., Kalashnikov I.N. On correlation between inherent optical properties at 650 nm, Secchi depth and blue-green algal abundance for the Gorky reservoir. Fundamental and Applied Hydrophysics. 2018, 11, 3, 26–33. doi:10.7868/S2073667318030036

30. Molkov A.A., Fedorov S.V., Pelevin V.V., Korchemkina E.N. On regional models for high-resolution retrieval of Chlorophyll a and TSM concentrations in the Gorky Reservoir by Sentinel-2 imagery. Remote Sensing. 2019, 10, 11, 1215– 1241. doi:10.3390/rs11101215

31. Molkov A.A., Pelevin V.V., Korchemkina E.N. Approach of non-station-based in situ measurements for high resolution satellite remote sensing of productive and highly changeable inland waters. Fundamental and Applied Hydrophysics. 2020, 13(2), 60–67. doi:10.7868/S2073667320020070

32. Fukshansky L. Absorption statistics in turbid media. Journal of Quantitative Spectroscopy and Radiative Transfer. 1987, 38, 389–406.

33. McClendon J.H., Fukshansky L. On the interpretation of absorption spectra of leaves — II. The non-absorbed ray of the sieve effect and the mean optical pathlength in the remainder of the leaf. Photo-chem Photobiol.1990, 51, 211–216.

34. Anisimov O., Fukshansky L. Stochastic radiation in macroheterogeneous random optical media. Journal of Quantitative Spectroscopy and Radiative Transfer. 1992, 48, 169–186.

35. Dolin L.S., Sergeeva E.A., Turchin I.V. Shadow noise in OCT images of biological tissues. Quantum Electronics. 2008, 38, 6, 543–550. doi:10.1070/QE2008v038n06ABEH013839

36. Dolin L.S. Development of the radiative transfer theory as applied to instrumental imaging in turbid media. Physics — Uspekhi. 2009, 52, 5, 519–526. doi:10.3367/UFNe.0179.200905k.0553

37. Dolin L.S., Sergeeva E.A., Turchin I.V. Correlation characteristics of optical coherence tomography images of turbid media with statistically inhomogeneous optical parameters. Journal of Quantitative Spectroscopy and Radiative Transfer. 2012, 113, 9, 691–703. doi:10.1016/j.jqsrt.2012.02.004

38. Dolin L.S., Dolina I.S., Saveliev V.A. A lidar method for determining internal wave characteristics. Izvestiya, Atmospheric and Oceanic Physics. 2012, 48, 4, 444–453. doi:10.1134/S0001433812040068

39. Dolin L.S., Savel’ev V.A. Theory of the propagation of a narrow light beam in a stratified scattering medium. Radiophysics and Quantum Electronics. 1979, 22, 11, 911–917.

40. Levin I.M., Kopelevich O.V. Correlations between the inherent hydrooptical characteristics in the spectral range close to 550 nm. Oceanology. 2007, 47, 3, 344–349. doi:10.1134/S000143700703006X

41. Levin I.M. Few-parameter optical models of seawater inherent optical properties. Fundamental and Applied Hydrophysics. 2014, 7, 3, 3–22 (in Russian).

42. Turlaev D.G., Dolin L.S. On observing underwater objects through a wavy water surface: a new algorithm for image correction and laboratory experiment. Izvestiya, Atmospheric and Oceanic Physics. 2013, 49, 3, 339–345. doi:10.1134/S0001433813030158

43. Turlaev D.G. Determining the vector of slopes of the water surface from its image undernatural iilumination. Fundamental and Applied Hydrophysics. 2018, 11, 3, 91–96 (in Russian). doi:10.7868/S20736673180300115


Review

For citations:


Dolin L.S. On the Influence of Spatial Fluctuations of the Water Inherent Optical Properties on the Energy of a Lidar Echo Signal Coming from a Water. Fundamental and Applied Hydrophysics. 2023;16(1):35–47. https://doi.org/10.59887/fpg/1gan-g7mu-dk9p

Views: 203


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)