Topographic Factor and Limit Transitions in the Equations for Subinertial Waves
https://doi.org/10.59887/fpg/92rg-6t7h-m4a2
Abstract
In this paper, sub-inertial waves propagating on the Kuril shelf and the oceanic trench are considered. Against the background of a historical review of the beginning of the study of topographic waves and the appearance of relevant terms, a description of the features of wave propagation and the derivation of the main dispersion equations are given. We show that all variants of the topographic solutions presented in the article are basically based on the same dispersion relation: this is the dispersion relation for Rossby topographic waves. Two separate classes of localized solutions have been constructed: one is for the shelf, and the second, in fact, is also for the shelf, but which is commonly called trench waves. We demonstrate that the transverse wave number for trench waves is not independent, as for shelf waves, but is a function of the longitudinal wave number. In other words, Rossby topographic waves are two–dimensional waves, while shelf waves are quasi-one-dimensional solutions. The analytical novelty of the work consists of the fact that we can make crosslinking of trench and shelf waves. This fact was not presented in previous articles on this topic.
About the Authors
V. G. GnevyshevRussian Federation
36 Nakhimovsky Prosp., Moscow, 117997
V. S. Travkin
Russian Federation
7–9 Universitetskaya Emb., St. Petersburg, 199034
T. V. Belonenko
Russian Federation
7–9 Universitetskaya Emb., St. Petersburg, 199034
References
1. Drivdal M., Weber J.E.H., Debernard J.B. Dispersion relation for сontinental shelf waves when the shallow shelf part has an arbitrary width: Application to the shelf west of Norway. Journal of Physical Oceanography. 2016, 46, 2, 537–549. doi:10.1175/jpo-d-15-0023.1
2. Gnevyshev V.G., Frolova A.V., Koldunov A.V., Belonenko T.V. Topographic effect for Rossby waves on a zonal shear flow. Fundamental and Applied Hydrophysics. 2021, 14, 1, 4–14. doi:10.7868/S2073667321010019
3. Pedlosky J. Geophysical fluid dynamics. Berlin, Springer, 1979. 624 p.
4. Gnevyshev V.V., Frolova A.V., Belonenko T.V. Topographic effect for Rossby waves on non-zonal shear flow. Water Resources. 2022, 49, 2, 240–248. doi:10.1134/S0097807822020063
5. Gnevyshev V.G., Frolova A.V., Kubryakov A.A., Sobko Yu.V., Belonenko T.V. Interaction between Rossby waves and a jet flow: Basic equations and verification for the Antarctic circumpolar current. Izvestiya, Atmospheric and Oceanic Physics. 2019, 55(5), 412–422. doi:10.1134/S0001433819050074
6. Efimov V.V., Kulikov E.A., Rabinovich A.B., Fine I.V. Waves in the ocean boundary regions. Leningrad, 1985, 250 p. (in Russian).
7. Belonenko T.V., Frolova A.V. Antarctic circumpolar current as a waveguide for Rossby waves and mesoscale eddies. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2019, 16, 1, 181–190. doi:10.21046/2070-7401-2019-16-1-181-190 (in Russian).
8. Belonenko T., Frolova A., Gnevyshev V. Detection of waveguide for Rossby waves using satellite altimetry in the Antarctic Circumpolar Current. International Journal of Remote Sensing. 2020, 41:16, 6232–6247, doi:10.1080/01431161.2020.1752955
9. LeBlond P., Mysak L.A. Waves in the Ocean. Elsevier Scientific Publishing Company, 1977. 602 p.
10. Mysak L.A., Leblond P.H., Emery W.J. Trench Waves. Journal of Physical Oceanography. 1979, 9(5), 1001–1013. doi:10.1175/1520–0485(1979)009<1001: TW>2.0.CO;2
11. Mysak L.A. Recent advances in shelf wave dynamics. Reviews of Geophysics and Space Physics. 1980, 18, 1, 211–241.
12. Sandalyuk N.V., Gnevyshev V.G., Belonenko T.V., Kochnev A.V. Application of the vortex layer problem to the Gulf Stream area. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2021, 18, 5, 242–251. doi:10.21046/2070-7401-2021-18-5-242-251 (in Russian).
13. Longuet-Higgins M.S. On the trapping of waves along a discontiunity of depth in a rotating ocean. Journal of Fluid Mechanics. 1968, 31, 3, 417–434.
14. Longuet-Higgins M.S. Double Kelvin waves with continuous depth profiles. Journal of Fluid Mechanics. 1968, 34(01), 49. doi:10.1017/s002211206800176x
15. Mysak L.A., Johnson E.R., Hsiem W.W. Baroclinic and barotropic instabilities of coastal currents. Journal of Physical Oceanography. 1981, 11(2), 209–230. doi:10.1175/1520–0485(1981)011<020
16. Buchwald V.T., Adams J.K. The propagation of continental shelf waves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1968. 305(1481), 235–250. doi:10.1098/rspa.1968.0115
17. Pelinovsky E.N. Hydrodynamics of tsunami waves. Nizhny Novgorod. IAP RAS. 1996, 156 p. (in Russian).
18. Didenkulova I., Pelinovsky E. On shallow water rogue wave formation in strongly inhomogeneous channels. Journal of Physics A: Mathematical and Theoretical. 2016, 49(19), 194001. doi:10.1088/1751-8113/49/19/194001
19. Ermakov A.M., Stepanyants Y.A. Transformation of long surface and tsunami-like waves in the ocean with a variable bathymetry. Pure and Applied Geophysics. 2019, 177(3), 1675–1693. doi:10.1007/s00024-019-02259-4
20. Rabinovich A.B., Thomson R.E. Evidence of diurnal shelf waves in satellite-tracked drifter trajectories off the Kuril Islands. Journal of Physical Oceanography. 2001, 31, 2650–2668. doi:10.1175/1520-0485(2001)031<2650:EODSWI>2.0.CO;2
21. Rabinovich A.B., Thomson R.E., Bograd S.J. Drifter observations of anticyclonic eddies near Bussol’ Strait, the Kuril Islands. Journal of Oceanography. 2002, 58, 661–671. doi:10.1023/A:1022890222516
22. Bulatov N.V., Lobanov V.B. Investigation of mesoscale eddies to the east of the Kuril Islands on the base of meteorological satellites data. Issledovanie Zemli iz Kosmosa. 1983, 3, 40–47 (in Russian).
23. Rogachev K.A. Rapid thermohaline transition in the Pacific western subarctic and Oyashio fresh core eddies. Journal of Geophysical Research: Oceans. 2000, 105, 8513–8526. doi:10.1029/1999JC900330
24. Kaneko H., Itoh S., Kouketsu S., Okunishi T., Hosoda S., Suga T. Evolution and modulation of a poleward propagating anticyclonic eddy along the Japan and Kuril-Kamchatka trenches. Journal of Geophysical Research: Oceans. 2015, 120, 4418–4440. doi:10.1002/2014JC010693
25. Prants S.V., Lobanov V.B., Budyansky M.V., Uleysky M. Yu. Lagrangian analysis of formation, structure, evolution and splitting of anticyclonic Kuril eddies. Deep Sea Research, Part I. 2016, 109, 61–75. doi:10.1016/j.dsr.2016.01.003
26. Efimov V.V., Rabinovich A.B. On resonant tidal currents and their connection with continental shelf waves in the northwestern Pacific Ocean. Izvestiya Akademii Nauk SSSR. Fizika Atmosfery i Okeana. 1980, 16, 10, 1091–1101 (in Russian).
27. Prants S.V. Trench eddies in the Northwest Pacific: An overview. Izvestiya, Atmospheric and Oceanic Physics. 2021, 57, 4, 341–353. doi:10.1134/S0001433821040216
Review
For citations:
Gnevyshev V.G., Travkin V.S., Belonenko T.V. Topographic Factor and Limit Transitions in the Equations for Subinertial Waves. Fundamental and Applied Hydrophysics. 2023;16(1):8–23. https://doi.org/10.59887/fpg/92rg-6t7h-m4a2