Preview

Fundamental and Applied Hydrophysics

Advanced search

Numerical Simulation of Temporal Variability of Methane Emissions from Mozhaysk Reservoir

https://doi.org/10.59887/fpg/umx3-6tet-vhkr

Abstract

Estimates of methane emission from the Mozhaysk reservoir surface were carried out using the mathematical model LAKE2.3. The average emission value is 361 tC per year, the average flux = 37.7 mgC–CH4 m–2 day–1. Comparison of the obtained estimates with in situ measurements revealed, that the methane emission and specific flux according to the model are in good agreement with the observations data. The ebullition makes the largest contribution to the total emission. During the heating period, an increase of methane emission is observed with a maximum before the autumn mixing stage. In the course of numerical experiments with the model, it was found that the amplitude of methane fluxes into the atmosphere is associated with fluctuations in atmospheric pressure, and the most significant emissions peaks associated with water level drawdowns. Effective method for calibrating the diffusion component of the methane flux into the atmosphere is the potential rate of methane oxidation in the Michaelis-Menten reaction, and for ebullition it is the methane generation parameter in bottom sediments — q10. For the described numerical experiments, the article presents the values of the annual emissions of methane into the atmosphere. 

About the Authors

V. M. Stepanenko
Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics
Russian Federation

119991, Leninskie Gory, 1, Moscow

Moscow



V. A. Lomov
Lomonosov Moscow State University; A.M. Obukhov Institute of Atmosphere Physics, Russian Academy of Sciences
Russian Federation

119991, Leninskie Gory, 1, Moscow

119017, Pyzhevsky per., 3/1, Moscow



M. G. Grechushnikova
Lomonosov Moscow State University; Institute of Water Problems, Russian Academy of Sciences
Russian Federation

119991, Leninskie Gory, 1, Moscow

119333, Gubkina st., 3, Moscow



References

1. Forster P., Ramaswamy V., Artaxo P., Berntsen T. et. al. Changes in atmospheric constituents and in radiative forcing. Asses. Report of the IPCC. 2007, Chapter 2, 129–217.

2. IPCC. The intergovernmental panel on climate change. URL: https://www.ipcc.ch (date of access: 01.12.2021).

3. Sanuois M., Biusquet P., Poulter B., Peregon A. et. al. The global methane budget 2000–2012. Earth System Science Data. 2016, 8, 697–751. doi:10.5194/essd-8-697-2016

4. Deemer B., Harrison A., Li S., Beaulieu J. et. al. Greenhouse gas emissions from reservoir water surfaces: A new global synthesis. BioScience. 2016, 66, 11, 949–964. doi:10.1093/biosci/biw117

5. Li S., Zhang Q. Carbon emission from global hydroelectric reservoirs revisited. Environmental Science and Pollution Research. 2014, 21, 13636–13641. doi:10.1007/s11356-014-3165-4

6. Louis V., Kelly C., Duchemin E., Rudd J. et. al. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. BioScience. 2000, 50, 766–775. doi:10.1641/0006–3568(2000)050[0766: RSASOG]2.0.CO;2

7. Tortajada C., Altinbilek D., Biswas K. Impact of large dams: A global assessment. Berlin, Springer, 2012. 410 p.

8. Tremblay A., Roehm C., Varfalvy L., Garneau M. Greenhouse gas emissions — fluxes and processes. Berlin, Springer. 2005. 732 p.

9. Stepanenko V. et.al. LAKE2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes. Geoscientific Model Development. 2016, 9, 5, 1977–2006. doi:10.5194/gmd-9-1977-2016

10. Stepanenko V., Valerio G., Pilotti M. Horizontal pressure gradient parameterization for one-dimensional lake models. Journal of Advances in Modelling Earth Systems. 2020, 12, e21063. doi:10.1029/2019MS001906

11. Stepanenko V., Machul’skaya E., Glagolev M., Lykosov V. Numerical modeling of methane emissions from lakes in the permafrost zone. Izvestiya — Atmospheric and Oceanic Physics. 2011, 47, 2, 252–264. doi:10.1134/S0001433811020113

12. Tan Z., Zhuang Q., Anthony K. Modeling methane emissions from arctic lakes: Model development and site-level study. Journal of Advances in Modelling Earth Systems. 2015, 7, 459–483. doi:10.1002/2014MS000344

13. Tan Z., Zhuang Q. Arctic lakes are continuous methane sources to the atmosphere under warming conditions. Environmental Research Letters. 2015, 10, 5, 054016. doi:10.1088/1748-9326/10/5/054016

14. Guseva S., Stepanenko V., Shurpali N., Marushchak M. et.al. Numerical simulation of methane emission from subarctic lake in Komi republic (Russia). Geography, Environment, Sustainability. 2016, 2, 9, 58–74. doi:10.24057/2071-9388-2016-9-2-11-20

15. Tan Z., Zhuang Q., Shurpali N., Marushchak M. et. al. Modeling CO2 emissions from Arctic lakes: Model development and site-level study. Journal of Advances in Modelling Earth Systems. 2017, 9, 5, 2190–2213. doi:10.1002/2017MS001028

16. Kiuru P., Ojala A., Mammarella I., Heiskanen J. et. al. Effects of climate change on CO2 concentration and efflux in a humic boreal lake: A modeling study. Journal of Geophysical Research: Biogeosciences. 2018, 123, 7, 2212–2233. doi:10.1029/2018JG004585

17. Guseva S., Bleninger T., Jöhnk K., Polli B. et. al. Multimodel simulation of vertical gas transfer in a temperate lake. Hydrology and Earth System Sciences. 2020, 24, 697–715. doi:10.5194/hess-24-697-2020

18. Gruca-Rokosz R., Tomaszek J. Methane and carbon dioxide in the sediment of a eutrophic reservoir: Production pathways and diffusion fluxes at the sediment–water interface. Water Air & Soil Pollution. 2015, 226, 16–32. doi:10.1007/s11270-014-2268-3

19. Bazhin N. Methane emission from bottom sediments. Chemistry for Sustainable Development. 2003, 11, 577–580.

20. Gash J. (main edit.) Greenhouse gas emissions related to freshwater reservoirs. World Bank Report. 2010, UNESCO/ IHA GHG Proj. P. 166.

21. Borrel G., Jezequel D., Bidderre-Petit C., Morel-Desrosiers N. et. al. Production and consumption of methane in freshwater lake ecosystems. Research Microbiology. 2011, 162, 832–847. doi:10.1016/j.resmic.2011.06.004

22. Guerin F., Abril G. Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir. Journal of Geophysical Research: Biogeosciences. 2007, 112, 3006–3020. doi:10.1029/2006JG000393

23. Bastviken D., Cole J., Pace M., Van de Bogert M. Fates of methane from different lake habitats: Connecting whole-lake budgets and CH4 emissions. Journal of Geophysical Research: Biogeosciences. 2008, 113, 2024–2037. doi:10.1029/2007JG000608

24. Garkusha D., Fedorova A., Tambieva N. Computing the methane cycle elements in the Aquatic ecosystems of the Sea of Azov and the World Ocean based on empirical formulae. Russian Meteorology and Hydrology. 2016, 41, 6, 410–417. doi:10.3103/S1068373916060054

25. Ostrovsky I., McGinnis D., Lapidus L., Eckert W. Quantifying gas ebullition with echosounder: the role of methane transport by bubbles in a medium-sized lake. Limnology and Oceanography: Methods. 2008, 6, 105–118. doi:10.4319/lom.2008.6.105

26. Harrison J., Deemer B., Birchfield M., O`Malley M. Reservoir water-level drawdowns accelerate and amplify methane emission. Environmental Science & Technology. 2017, 51, 3, 1267–1277. doi:10.1021/acs.est.6b03185

27. Miller B., Arntzen E., Goldman A., Richmond M. Methane ebullition in temperate hydropower reservoirs and implications for US policy on greenhouse gas emissions. Environmental Management. 2017, 60, 1–15. doi:10.1007/s00267-017-0909-1

28. Beaulieu J., DelSontro T., Downing J. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nature Communications. 2019, 10, 1375–1380. doi:10.1038/s41467-019-09100-5

29. Bartosiewicz M., Ptytulska A., Laurion I., Maranger R. Effects of phytoplankton blooms on fluxes and emissions of greenhouse gases in a eutrophic lake. Water Research. 2021, 196, doi:10.1016/j.watres.2021.116985

30. Kemenes A., Melack J., Forsberg B. Downstream emissions of CH4 and CO2 from hydroelectric reservoirs (Tucuruí, Samuel, and Curuá-Una) in the Amazon basin. Inland Waters. 2016, 6, 295–302. doi:10.1080/IW-6.3.980

31. Edelshtein K. Hydrology of lakes and reservoirs. M., “Pero” publishing, 2014. 399 p. (in Russian).

32. Bastviken D., Santoro A., Marotta H. Methane emissions from Pantanal, South America, during the low water season: toward more comprehensive sampling. Environmental Science & Technology. 2010, 44, 5450–5455. doi:10.1021/es1005048

33. Iakunin M., Stepanenko V., Salgado R., Potes M. et. al. Numerical study of the seasonal thermal and gas regimes of the largest artificial reservoir in western Europe using the LAKE2.0 model. Geoscientific Model Development. 2020, 13, 8, 3475–3488. doi.org/10.5194/gmd-13–3475–2020

34. Businger J., Wyngaard J., Izumi Y., Bradley E. Flux-profile relationships in the atmospheric surface layer. Journal of the Atmospheric Sciences. 1971, 28, 2, 181–189.

35. Paulson C. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. Journal of Applied Meteorology. 1970, 9, 6, 857–861.

36. McGinnis D., Greinert J., Artemov Y., Beaubien E., et.al. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? Journal of Geophysical Research: Oceans. 2006, 111, C9. doi.org/10.1029/2005JC003183

37. Stefan H., Fang X. Dissolved oxygen model for regional lake analysis. Ecological Modelling. 1994, 71, 1–3, 37–68.

38. Hanson P., Pollard A., Bade D., Predick K. et. al. A model of carbon evasion and sedimentation in temperate lakes. Global Change Biology. 2004, 10, 8, 1285–1298. doi:10.1111/j.1529–8817.2003.00805.x

39. Sadeghian A., Chapra S., Hudson J., Wheater H. et. al. Improving in-lake water quality modeling using variable chlorophyll a/algal biomass ratios. Environmental Modelling & Software. 2018, 101, 73–85. doi:10.1016/j.envsoft.2017.12.009

40. Fichot C., Miller W. An approach to quantify depth-resolved marine photochemical fluxes using remote sensing: Application to carbon monoxide (CO) photoproduction. Remote Sensing of Environment. 2010, 114, 7, 1363–1377. doi:10.1016/j.rse.2010.01.019

41. Koehler B., Landelius T., Weyhenmeyer G., Machida N. et. al. Sunlight-induced carbon dioxide emissions from inland waters. Global Biogeochemical Cycles. 2014, 28, 7, 696–711. doi:10.1002/2014GB004850

42. Walker R., Snodgrass W. Model for sediment oxygen demand in lakes. Journal of Environmental Engineering. 1986, 112, 1, 25–43. doi:10.1061/(ASCE)0733–9372(1986)112:1(25)

43. Donelan M., Wanninkhof R. Gas transfer at water surfaces — concepts and issues. Geophysical Monograph Series. 2002, 127, 1–10. doi:10.1029/GM127p0001

44. Stepanenko V., Repina I., Ganbat G., Davaa G. Numerical simulation of ice cover of saline lakes. Izvestiya, Atmospheric and Oceanic Physics. 2019, 55, 1, 129–138. doi:10.1134/S0001433819010092

45. Lomov V., Stepanenko V., Grechushnikova M., Repina I. Methane fluxes in an artificial valley reservoir according to field observations and mathematical modeling. IOP Conf. Ser.: Earth Environmental Science. 2020, 611, 12–29. doi:10.1088/1755–1315/611/1/012029

46. Lomov V., Grechushnikova M., Kazantsev V., Repina I. Reasons and patterns of spatio-temporal variability of methane emission from the Mozhaysk Reservoir in summer period. E3S Web of Conferences IV Vinogradov Conference. 2020, 163, 03010. doi:10.1051/e3sconf/202016303010

47. Liikanen A., Murtoniemi T., Tanskanen H., Tero V. et. al. Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake. Biogeochemistry. 2002, 59, 3, 269–286. doi:10.1023/A%3A1016015526712


Review

For citations:


Stepanenko V.M., Lomov V.A., Grechushnikova M.G. Numerical Simulation of Temporal Variability of Methane Emissions from Mozhaysk Reservoir. Fundamental and Applied Hydrophysics. 2022;15(4):82–100. (In Russ.) https://doi.org/10.59887/fpg/umx3-6tet-vhkr

Views: 240


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)