Preview

Fundamental and Applied Hydrophysics

Advanced search

Examples of the Water Dynamics Influence on the Spatial Distribution of Chlorophyll a Fluorescence Intensity in the Surface Layer of the Barents and Norwegian Seas

https://doi.org/10.59887/fpg/dvvv-rrk5-5p2b

Abstract

The influence of water dynamics on the spatial distribution of chlorophyll a fluorescence intensity in the surface layer of the Barents and Norwegian Seas, obtained during the 80-th cruise of the R/V “Akademik Mstislav Keldysh” using the flow-through measuring complex in August 2020, was demonstrated. The divergence of the current velocity field, calculated according to reanalysis data, was chosen as a parameter describing the dynamics of water masses. The application of the sliding correlations method allowed us to identify areas of the track with positive and negative correlations between the values of divergence and chlorophyll a fluorescence intensity. It is shown that a positive correlation is formed as a result of the vertical movement of the water surface layer, a negative one — may be a consequence of the water masses advection and the daily changes of the values of photosynthetically active radiation. The part of obtained results is confirmed by satellite data on the spatial distribution of chlorophyll a concentration.

About the Authors

E. A. Aglova
Shirshov Institute of Oceanology, Russian Academy of Sciences; Moscow Institute of Physics and Technology
Russian Federation

Yevgeniya A. Aglova

РИНЦ AuthorID: 1160772

36 Nakhimovsky Prosp., Moscow, 117997

9 Institutsky Lane, Dolgoprudny, Moscow Region, 141707



D. I. Glukhovets
Shirshov Institute of Oceanology, Russian Academy of Sciences; Moscow Institute of Physics and Technology
Russian Federation

Dmitry I. Glukhovets

РИНЦ AuthorID: 924346

36 Nakhimovsky Prosp., Moscow, 117997

9 Institutsky Lane, Dolgoprudny, Moscow Region, 141707



References

1. Hunt Jr. G.L., Drinkwater K.F., Arrigo K., Berge J., Daly K.L., Danielson S., Daase M., Hop H., Isla E., Karnovsky N., Laidre K. Advection in polar and sub-polar environments: Impacts on high latitude marine ecosystems. Progress in Oceanography. 2016, 149, 40–81. doi: 10.1016/j.pocean.2016.10.004

2. Salyuk P.A., Glukhovets D.I., Lipinskaya N.A., Moiseeva N.A., Churilova T. Ya., Ponomarev V.I., Aglova E.A., Artemiev V.A., Latushkin A.A., Major A. Yu. Variability of the sea surface bio-optical characteristics in the region of Falkland Current and Patagonian shelf. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2021, 18, 6, 200– 213 (in Russian). doi:10.21046/2070-7401-2021-18-6-200-213

3. Mankovsky V.I., Mankovskaya E.V. Biо-optical characteristics in a large-scale survey area in the northern tropical zone of the Atlantic Ocean and their relationship with water dynamics. Oceanology. 2022, 62, 22–29. doi:10.1134/S000143702201009X

4. Wassmann P., Kosobokova K.N., Slagstad D., Drinkwater K.F., Hopcroft R.R., Moore S.E., Ellingsen I., Nelson R.J., Carmack E., Popova E., Berge J. The contiguous domains of Arctic Ocean advection: trails of life and death. Progress in Oceanography. 2015, 139, 42–65. doi:10.1016/j.pocean.2015.06.011

5. Randelhoff A., Sundfjord A. Short commentary on marine productivity at Arctic shelf breaks: upwelling, advection and vertical mixing. Ocean Science. 2018, 14, 2, 293–300. doi:10.5194/os-14-293-2018

6. Lorenzen C.J. A method for the continuous measurement of in vivo chlorophyll concentration. Deep Sea Research and Oceanographic Abstracts. 1966, 13, 2, 223–227. doi:10.1016/0011-7471(66)91102-8

7. Nagornyi I.G., Maior A. Yu., Salyuk P.A., Doroshenkov I.M. A mobile complex for on-line studying water areas and surface atmosphere. Instruments and Experimental Techniques. 2014, 1, 68–71. doi: 10.1134/S0020441214010175

8. Glukhovets D.I., Goldin Yu.A. Surface desalinated layer distribution in the Kara Sea determined by shipboard and satellite data // Oceanologia. 2020. V.62. N3. P. 364–373. doi:10.1016/j.oceano.2020.04.002

9. Falkowski P.G., Raven J.A. Aquatic Photosynthesis. 2nd edn. Oxford: Princeton University Press, 2007. 484 p.

10. Klyuvitkin A.A., Politova N.V., Novigatsky A.N., Kravchishina M.D. Studies of the European Arctic on Cruise 80 of the R/V Akademik Mstislav Keldysh. Oceanology. 2021, 61, 1, 139–141. doi:10.1134/S0001437021010094

11. Goldin Y.A., Glukhovets D.I., Gureev B.A., Grigoriev A.V., Artemiev V.A. Shipboard flow-through complex for measuring bio-optical and hydrological seawater characteristics. Oceanology. 2020, 60, 5, 713–720. doi:10.1134/S0001437020040104

12. Bleck R. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modelling. 2002, 4, 1, 55–88.

13. Kholod A.L. Overview of the Copernicus marine environment monitoring service products available for the Arctic region. Physical Oceanography. 2017, 2, 25–35.

14. Metzger E.J., Hogan P.J., Shriver J.F. et al. Validation test report for the Global Ocean forecast system 3.5–1/25 degree HYCOM/CICE with Tides. Naval Research LabS Washington DC Washington United States. URL: https://www.hycom.org/attachments/366_HYCOM-NCODA_VTR_I_Memo_Report_9148.pdf (date of access: 04.01.2022).

15. Glukhovets D.I., Goldin Yu.A. Research of the relationship between salinity and yellow substance fluorescence in the Kara Sea. Fundamental and Applied Hydrophysics. 2018, 11, 3, 34–39 (in Russian). doi:10.7868/S2073667318030048

16. O’Reilly J.E., Werdell P.J. Chlorophyll algorithms for ocean color sensors — OC4, OC5 and OC6. Remote Sensing of Environment. 2019, 229, 32–47. doi:10.1016/j.rse.2019.04.021

17. Giraudeau J., Hulot V., Hanquiez V., Devaux L., Howa H., Garlan T. A survey of the summer coccolithophore community in the western Barents Sea. Journal of Marine Systems. 2016, 158, 93–105. doi:10.1016/j.jmarsys.2016.02.012

18. Alexeev V.A., Ivanov V.V., Repina I.A., Lavrova O. Yu., Stanichny S.V. Convective structures in the Lofoten Basin based on satellite and Argo data. Izvestiya, Atmospheric and Oceanic Physics. 2016, 52, 9, 1064–10. doi:10.1134/S0001433816090036

19. Mosharov S.A., Mosharova I.V. Dynamics of the potential photosynthetic activity of marine phytoplankton during illumination change in the North Atlantic. Issues of Modern Algology. 2019, 1(19), 35–45 (in Russian). doi:10.33624/2311-0147-2019-1(19)-35-45


Review

For citations:


Aglova E.A., Glukhovets D.I. Examples of the Water Dynamics Influence on the Spatial Distribution of Chlorophyll a Fluorescence Intensity in the Surface Layer of the Barents and Norwegian Seas. Fundamental and Applied Hydrophysics. 2022;15(4):54-62. https://doi.org/10.59887/fpg/dvvv-rrk5-5p2b

Views: 174


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)