Preview

Fundamental and Applied Hydrophysics

Advanced search

Spatial and Temporal Variability of the Characteristics of the River Plume Frontal Zone in the Kara Sea in the First Two Decades of the XXI Century

https://doi.org/10.59887/fpg/38mu-zda7-dpep

Abstract

The article is devoted to obtaining long-term physical and geographical characteristics of the River Plume frontal zone as a separate hydrological structure that forms at the boundary of the fresh surface layer of the Ob and Yenisei Rivers. The primary data for identifying the frontal zone are satellite measurements of surface temperature (MODIS Aqua, Suomi NPP-VIIRS), surface salinity (NASA SMAP) and sea level (AVISO) for the period from July to October from 2002 to 2020. The position and characteristics of the River Plume frontal zone were determined using cluster analysis, which was applied for the first time to an integrated set of remote satellite sensing data in this region. The results of the study showed that in the warm period of the year, the average long-term surface temperature gradient of the River Plume frontal zone was 0.08 °C/km, the surface salinity gradient was 0.1 PSU/km, and the area was 155,000 km2. During the ice-free period of the second decade of the 21st century, the temperature gradient of the frontal zone weakens by 0.04 °C/km, and the area decreases by 100,000 km2. The correlation analysis showed that the temperature and salinity gradients, as well as the area of the River Plume frontal zone, were determined by the volumes of the river discharge of the Ob and Yenisei and ice parameters in the warm period of the year. The article presents the obtained estimates of the relationship between the characteristics of the frontal zone and the volume of river discharge, ice cover and wind parameters, as well as the value of the atmospheric indices of the Scandinavian oscillation (SCAND). 

About the Authors

A. A. Konik
Shirshov Institute of Oceanology, Russian Academy of Sciences; St. Petersburg State University
Russian Federation

 Aleksandr A. Konik

 AuthorID: 950834

 Scopus AuthorID: 57203864647


36 Nakhimovsky Prosp., Moscow, 117997

7–9 Universitetskaya Emb., St. Petersburg, 199034



A. V. Zimin
Shirshov Institute of Oceanology, Russian Academy of Sciences; St. Petersburg State University
Russian Federation

 Alexey V. Zimin

 AuthorID: 124451

 Scopus AuthorID: 55032301400

 WoS ResearcherID: C-5885-2014



36 Nakhimovsky Prosp., Moscow, 117997

7–9 Universitetskaya Emb., St. Petersburg, 199034



O. A. Atadzhanova
Marine Hydrophysical Institute, Russian Academy of Sciences
Russian Federation

Oksana A. Atadzhanova

AuthorID: 846708

2 Каpitanskaya Str., Sevastopol, 299011



References

1. Pavlov V.K., Pfirman S.L. Hydrographic structure and variability of the Kara Sea: Implications for pollutant distribution. Deep Sea Research Part II: Topical Studies in Oceanography. 1995, 42, 6, 1369–1390. doi:10.1016/0967–0645(95)00046–1

2. Harms I.H., Karcher M.J. Modeling the seasonal variability of hydrography and circulation in the Kara Sea. Journal of Geophysical Research: Oceans. 1999, 104, C6, 13431–13448. doi:10.1029/1999jc900048

3. Dobrovolsky A.D., Zalogin B.S. Seas of the USSR. Moscow, MGU, 1982. 192 p. (in Russian).

4. Oziel L., Sirven J., Gascard J.-C. The Barents Sea frontal zones and water masses variability (1980–2011). Ocean Science. 2016, 12, 1, 169–184. doi:10.5194/os-12–169–2016

5. Barton B.I., Lique C., Lenn Y.‐D. Water mass properties derived from satellite observations in the Barents Sea. Journal of Geophysical Research: Oceans. 2020, 125, e2019JC015449. doi:10.1029/2019JC015449

6. Bauch D., Cherniavskaia E. Water Mass Classification on a Highly Variable Arctic Shelf Region: Origin of Laptev Sea Water Masses and Implications for the Nutrient Budget. Journal of Geophysical Research: Oceans. 2018, 123, 3, 1896– 1906. doi:10.1002/2017jc013524

7. Osadchiev A.A., Frey D.I., Shchuka S.A., Tilinina N.D., Morozov E.G., Zavialov P.O. Structure of the freshened surface layer in the Kara Sea during ice‐free periods. Journal of Geophysical Research: Oceans. 2020, 1–35. doi:10.1029/2020jc016486

8. Zatsepin A.G., Zavialov P.O., Kremenetskiy V.V., Poyarkov S.G., Soloviev D.M. Fresh surface layer in the Kara Sea. Oceanology. 2010, 50, 5, 643–656. doi:10.1134/S0001437010050024

9. Zavialov P.O., Izhitskiy A.S., Osadchiev A.A., Pelevin V.V., Grabovskiy A.B. The structure of thermohaline and bio-optical fields in the surface layer of the Kara Sea in September 2011. Oceanology. 2015, 55, 4, 461–471. doi:10.1134/s0001437015040177

10. Kubryakov A.A., Stanichny S.V., Zatsepin A.G. River plume dynamics in the Kara Sea from altimetry-based Lagrangian model, satellite salinity and chlorophyll data. Remote Sensing of Environment. 2016, 176, 177–187. doi:10.1016/j.rse.2016.01.020

11. Polukhin A.A. The role of river runoff in the Kara Sea surface layer acidification and carbonate system changes. Environmental Research Letters. 2019, 14, 105007. doi:10.1088/1748–9326/ab421

12. Konik A.A., Zimin A.V., Atadzhanova O.A., Pedchenko A.P. Assessment of the variability of the river plums frontal zone in the Kara Sea on the basis of integration of satellite remote sensing data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa. 2021, 18, 2, 241–250 (in Russian). doi:10.21046/2070-7401-2021-18-2-241-250

13. Holmes R.M., Peterson B.J., Zulidov V.V. et al. Nutrient chemistry of the Ob’ and Yenisey Rivers, Siberia: Results from June 2000 expedition and evaluation of longterm data sets. Marine Chemistry. 2001, 75, 219–227. doi:10.1016/s0304–4203(01)00038-x

14. Fedorov K.N. The physical nature and structure of oceanic fronts. Leningrad, Gidrometeoizdat, 1983. 296 p. (in Russian).

15. Atadzhanova O.A., Zimin A.V., Svergun E.I., Konik A.A. Submesoscale eddy structures and frontal dynamics in the Barents Sea. Physical Oceanography. 2018, 25, 3, 220–228. doi:10.22449/1573-160X-2018-3-220-228

16. Zhuk V.R., Kubryakov A.A. Interannual variability of the Lena River plume propagation in 1993–2020 during the ice-free period on the base of satellite salinity, temperature, and altimetry measurements. Remote Sensing. 2021, 13, 21, 4252, 1–20. doi:10.3390/rs13214252

17. Supply A., Boutin J., Vergely J.-L., Kolodziejczyk N., Reverdin G., Reul N., Tarasenko A. New insights into SMOS sea surface salinity retrievals in the Arctic Ocean. Remote Sensing of Environment. 2020, 249, 112027. doi:10.1016/j.rse.2020.112027

18. Janout M.A. et al. Kara Sea freshwater transport through Vilkitsky Strait: Variability, forcing, and further pathways toward the western Arctic Ocean from a model and observations. Journal of Geophysical Research: Oceans. 2015, 120, 4925–4944. doi:10.1002/2014JC010635

19. Glukhovets D.I., Goldin Y.A. Surface desalinated layer distribution in the Kara Sea determined by shipboard and satellite data. Oceanologia. 2020, 62, 364–373. doi:10.1016/j.oceano.2020.04.002

20. Warner J.L., Screen J.A., Scaife A.A. Links between Barents‐Kara Sea ice and the extratropical atmospheric circulation explained by internal variability and tropical forcing. Geophysical Research Letters. 2019, 1–18. doi:10.1029/2019gl085679

21. Kostianoy A.G., Nihoul J.C.J., Rodionov V.B. Physical oceanography of the frontal zones in Sub-Arctic Seas. Elsevier Oceanography Series, 2004. 71 p.

22. Ivshin V.A., Trofimov A.G., Titov O.V. Barents Sea thermal frontal zones in 1960–2017: variability, weakening, shifting. ICES Journal of Marine Science. 2019, 76, i3—i9. doi:10.1093/icesjms/fsz159

23. Liu Y., Minnett P.J. Sampling errors in satellite-derived infrared sea-surface temperatures. Part I: Global and regional MODIS fields. Remote Sensing of Environment. 2016, 177, 48–64. doi:10.1016/j.rse.2016.02.026

24. Meissner T., Wentz F.J., and Le Vine D.M. The salinity retrieval algorithms for the NASA Aquarius Version 5 and SMAP Version 3 releases. Remote Sensing. 2018, 10, 1121. doi:10.3390/rs10071121

25. Ablain M. et al. Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project. Ocean Science. 2015, 11, 67–82. doi:10.5194/os-11–67–2015

26. Spreen G., Kaleschke L., Heygster G. Sea ice remote sensing using AMSR‐E89-GHz channels. Journal of Geophysical Research. 2008, 113, C02S03. doi:10.1029/2005JC003384

27. Climate Diagnostics Bulletin. Climate Prediction Center. US Department of Commerce, 1999. 80 p.

28. Barnston A.G., Livezey R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly Weather Review. 1987, 115, 6, 1083–1126. doi:10.1175/1520–0493(1987)115<1083:csapol>2.0.co;

29. Gao N., Bueh C., Xie Z., Gong Y.A. Novel identification of the Polar/Eurasia pattern and its weather impact in May. Journal of Meteorological Research. 2019, 33, 5, 810–825. doi:10.1007/s13351-019-9023-z

30. Kuzin V.I., Lapteva N.A. Mathematical simulation of runoff of main Siberian rivers. Atmospheric and Oceanic Optics. 2014, 27, 6, 525–529 (in Russian).

31. Karklin V.O., Yulin A.V., Sharatunova M.V., Mоchnova L.Р. Climate variability of the Kara Sea ice massifs. Arctic and Antarctic Research. 2017, 4, 37–46 (in Russian). doi:10.30758/0555-2648-2017-0-4-37-46

32. Yamanouchi T., Takata K. Rapid change of the Arctic climate system and its global influences — Overview of GRENE Arctic climate change research project (2011–2016). Polar Science. 2020, 100548. doi:10.1016/j.polar.2020.100548


Review

For citations:


Konik A.A., Zimin A.V., Atadzhanova O.A. Spatial and Temporal Variability of the Characteristics of the River Plume Frontal Zone in the Kara Sea in the First Two Decades of the XXI Century. Fundamental and Applied Hydrophysics. 2022;15(4):23–41. https://doi.org/10.59887/fpg/38mu-zda7-dpep

Views: 245


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)