Preview

Fundamental and Applied Hydrophysics

Advanced search

Modeling of internal wave action on offshore platforms for hydrological conditions of the Sakhalin shelf zone

Abstract

Dynamical loads are estimated on underwater vertical cylindrical parts of offshore platforms from the forcing of fully nonlinear internal wave motions generated by multicomponent barotropic tidal flow over topography along a vertical section for the conditions of the Sea of Okhotsk (Aniva Bay, near the south-eastern part of the Sakhalin Island shelf). The evolution of this process is analysed using numerical model of Euler equations for incompressible density-stratified fluid in a vertical plane. The intensity of pressure on lateral underwater surface and the rate inertia moment are expressed according to Morison’s formula for a cylindrical pile of 2.5 m diameter and 42 m height and computed as functions of time. They can reach values of 2.3∙105 N and 4.8∙106 N∙m, respectively, during the tidal cycle. The frequency of the appearance of large peak values in the internal wave velocity field and the probabilities of the corresponding high loads are also calculated.

About the Authors

E. Rouvinskaya
Nizhny Novgorod State Technical University n. a. R. E. Alekseev
Russian Federation

Nizhny Novgorod



O. Kurkina
Nizhny Novgorod State Technical University n. a. R. E. Alekseev
Russian Federation

Nizhny Novgorod



A. Kurkin
Nizhny Novgorod State Technical University n. a. R. E. Alekseev
Russian Federation

Nizhny Novgorod



A. Zaytsev
Nizhny Novgorod State Technical University n. a. R. E. Alekseev; Special Research Bureau for Automation of Marine Researches, Far Eastern Branch of Russian Academy of Sciences
Russian Federation

Nizhny Novgorod

Yuzhno-Sakhalinsk



References

1. Bourgault D., Morsilli M., Richards C., Neumeier U., Kelley D.E. Sediment resuspension and nepheloid layers induced by long internal solitary waves shoaling orthogonally on uniform slopes. Continental Shelf Research. 2014, 72, 21—33.

2. Aghsaee P., Boegman L. Experimental investigation of sediment resuspension beneath internal solitary waves of depression. J. Geophys. Res. Oceans. 2015, 120, 5, 3301—3314.

3. Nishino S., Kawaguchi Y., Inoue J., Hirawake T., Fujiwara A., Futsuki R., Onodera J., Aoyama M. Nutrient supply and biological response to wind-induced mixing, inertial motion, internal waves, and currents in the northern Chukchi sea. J. Geophys. Res. Oceans. 2015, 120, 3, 1975—1992.

4. Wall M., Putchim L., Schmidt G. M., Jantzen C., Khokiattiwong S., Richter C. Large-amplitude internal waves benefit corals during thermal stress. Proceedings of the Royal Society of London B: Biological Sciences. 2015, 282, 20140650.

5. Wang Y.-H. Phytoplankton transport to coral reefs by internal solitons in the northern south China sea. Coral reefs. 2016, 35, 3, 1061—1068.

6. Rutenko A. N. The influence of internal waves on losses during sound propagation on a shelf. Acoustical Physics. 2010, 56, 5, 703—713.

7. Yang T. C. Acoustic mode coupling induced by nonlinear internal waves: Evaluation of the mode coupling matrices and application. Journal of the Acoustical Society of America. 2014, 135, 2, 610—625.

8. Wei G., Du H., Xu X., Zhang Y., Qu Z., Hu T., You Y. Experimental investigation of the generation of large-amplitude internal solitary wave and its interaction with a submerged slender body. Science China Physics, Mechanics and Astronomy. 2014, 57, 2, 301—310.

9. Cai S., Xu J., Chen Z., Xie J., Deng X., Lv H. The effect of a seasonal stratification variation on the load exerted by internal solitary waves on a cylindrical pile. Acta Oceanologica Sinica. 2014, 33, 7, 21—26.

10. Chakrabarti S. Handbook of offshore engineering. London, Elsevier, 2005, 1321 p.

11. Osborne A. R. Nonlinear ocean waves and the Inverse Scattering Transform. San Diego, Elsevier, 2010, 944 p.

12. Cai S., Long X., Gan Z. A method to estimate the forces exerted by internal solitons on cylindrical piles. Ocean Engineering. 2003, 30, 5, 673—689.

13. Cai S., Long X., Wang S. Forces and torques exerted by internal solitons in shear flows on cylindrical piles. Applied Ocean Research. 2008, 30, 1, 72—77.

14. Song Z. J., Teng B., Gou Y., Lu L., Shi Z. M., Xiao Y., Qu Y. Comparisons of internal solitary wave and surface wave actions on marine structures and their responses. Applied Ocean Research. 2011, 33, 2, 120—129.

15. Si Z., Zhang Y., Fan Z. A numerical simulation of shear forces and torques exerted by large-amplitude internal solitary waves on a rigid pile in South China Sea. Applied Ocean Research. 2012, 37, 127—132.

16. Xie J., Jian Y., Yang L. Strongly nonlinear internal soliton load on a small vertical circular cylinder in two-layer fluids. Applied Mathematical Modelling. 2010, 34, 8, 2089—2101.

17. Xie J., Xu J., Cai S. A numerical study of the load on cylindrical piles exerted by internal solitary waves. Journal of Fluids and Structures. 2011, 27, 8, 1252—1261.

18. Du T., Sun L., Zhang Y., Bao X., Fang X. An estimation of internal soliton forces on a pile in the ocean. J. Ocean Univ. China. 2007, 6/2, 101—116.

19. Newman J. N. Marine Hydrodynamics. Cambridge, MIT Press, 1977, 402 p.

20. Aleshkov Yu. Z. The theory of the interaction of waves and obstacles. Leningrad, LST Publ., 1990, 371 p. (in Russian).

21. Khalfin I. Sh. The impact of waves on the offshore oil and gas facilities. Мoscow, Nedra, 1990, 312 p. (in Russian).

22. Zhang D., Paterson E. G. A study of wave forces on an offshore platform by direct CFD and Morison equation. Proc. of 2nd Symposium on OpenFOAM in Wind Energy. 2014, 1—34.

23. Housseine C., Monroy C., de Hauteclocque G. Stochastic Linearization of the Morison Equation Applied to an Offshore Wind Turbine. Proc. ASME. 56574; Volume 9: Ocean Renewable Energy, V009T09A040, May 31, 2015, OMAE2015-41301.

24. Morison J. R., O'Brien M. P., Johnson J. W., Schaaf S. A. The forces exerted by surface waves on piles. Petroleum transactions, AIME. 1950, 189, 149—157.

25. Tovstik P. E., Tovstik T. M., Shekhovtsov A. S., Shekhovtsov V. A. Motion of a flowing cylinder under waves. Vestnik St. Petersburg Univ., ser. 1. 2012, 3, 137—143 (in Russian).

26. Lighhill M. J. Fundamentals concerning wave loading on offshore structures. Journal of Fluid Mechanics. 1986, 173, 667—681.

27. Tyugin D. Yu., Kurkin A. A., Pelinovsky E. N., Kurkina O. E. Increase of productivity of software package for modeling of internal gravity waves IGW Research with the help of Intel® Parallel Studio XE 2013. Fundamentalnaya i Prikladnaya Gidrofizika. 2012, 5, 3, 89—95 (in Russian).

28. Rouvinskaya E. A., Kurkina O. E., Kurkin A. A. Modeling of internal weather in the ecosystem of the stratified sea shelf. Ecological Systems and Devices. 2011, 6, 8—16 (in Russian).

29. Romanov A. A., Sedaeva O. S., Shevchenko G. V. Seasonal and tidal variations of the sea level between Hokkaido and Sakhalin Islands based on satellite altimetry and coastal tide gauge data. J. Pacific Oceanography. 2004, 2, 117—125.


Review

For citations:


Rouvinskaya E., Kurkina O., Kurkin A., Zaytsev A. Modeling of internal wave action on offshore platforms for hydrological conditions of the Sakhalin shelf zone. Fundamental and Applied Hydrophysics. 2017;10(4):61-70.

Views: 73


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6673 (Print)
ISSN 2782-5221 (Online)